# **BSM from SM precision**

### Dario Buttazzo



Istituto Nazionale di Fisica Nucleare

PASCOS 2024 — Rencontres du Vietnam — Quy Nhon, 8.7.2024

Goal: explore physics at least up to  $M \approx 10 \,\mathrm{TeV}$ 

What causes EWSB? i.e. does the SM hold up to few TeV?

H ······ H 
$$\longrightarrow M_{\rm NP} \lesssim 4\pi v \approx 3 \,{\rm TeV}$$
  
rough estimate! there can easily be some O(1) factor

... and how is it related to the flavor problem?

Goal: explore physics at least up to  $M \approx 10 \,\mathrm{TeV}$ 

- What causes EWSB? i.e. does the SM hold up to few TeV?
- What is dark matter? Is it a WIMP?



Goal: explore physics at least up to  $M \approx 10 \,\mathrm{TeV}$ 

- What causes EWSB? i.e. does the SM hold up to few TeV?
- What is dark matter? Is it a WIMP?
- Electroweak radiation: new phenomena in the SM
   Restoration of EW symmetry and radiation of "massless" EW bosons

 $E \approx 10 \,\mathrm{TeV}$ 

### Two paths to precision



The "multipole expansion" of particle physics: EFT

$$\mathscr{L} = \mathscr{L}_{\mathrm{SM}}^{d=4} + \frac{1}{\Lambda^2} \sum_{i} c_i \mathcal{O}_i^{d=6} + \frac{1}{\Lambda^4} \sum_{i} c_i \mathcal{O}_i^{d=8} + \cdots$$

- Universal: particle content + Lorentz symmetry + SM internal symmetries
- UV model encoded in values of Wilson coefficients  $c_i$

### Two paths to precision



Two ways to improve precision on coefficients (test higher scales  $\Lambda$ )

+ High rate:

More events = Better precision

+ High energy:

New physics effects grow ~  $E^2$  Hard scattering  $\sigma_{\rm SM} \sim 1/s$ 

- The SM works well at the TeV scale:
- The Higgs boson is SM-like:

$$\delta\kappa \sim \frac{v^2}{M_{\rm NP}^2} g_{\star}^2 \lesssim 5\%$$
  $M_{\rm NP} \gtrsim g_{\star} \,{\rm TeV}$ 

7

$$\delta \varepsilon \sim \frac{m_W^2}{M_{\rm NP}^2} \lesssim {\rm few} \times 10^{-3}$$
  $\longrightarrow$   $M_{\rm NP} \gtrsim 2 \,{\rm TeV}$ 

106

**10<sup>2</sup>** 

10<sup>1</sup>

 $10^{0}$ 

<sup>10<sup>4</sup></sup> 10<sup>5</sup> 10<sup>4</sup> 10<sup>3</sup>





- The SM works well at the TeV scale:
- The Higgs boson is SM-like:

$$\delta\kappa \sim \frac{v^2}{M_{\rm NP}^2} g_{\star}^2 \lesssim 5\%$$
  $\longrightarrow$   $M_{\rm NP} \gtrsim g_{\star} \,{\rm TeV}$ 

7

$$\delta \varepsilon \sim \frac{m_W^2}{M_{\rm NP}^2} \lesssim {\rm few} \times 10^{-3}$$
  $\longrightarrow$   $M_{\rm NP} \gtrsim 2 \,{\rm TeV}$ 

 $10^{6}$ 

**10<sup>2</sup>** 

10<sup>1</sup>

 $10^{0}$ 

<sup>10</sup> 201 Scale [TeV] 10<sup>4</sup> 10<sup>3</sup> 10<sup>3</sup>





- The SM works well at the TeV scale:
- The Higgs boson is SM-like:

$$\delta\kappa \sim \frac{v^2}{M_{\rm NP}^2} g_{\star}^2 \lesssim 5\%$$
  $M_{\rm NP} \gtrsim g_{\star} \,{\rm TeV}$ 

The EW sector is SM-like:

7

$$\delta \varepsilon \sim \frac{m_W^2}{M_{\rm NP}^2} \lesssim {\rm few} \times 10^{-3} \qquad \longrightarrow \qquad M_{\rm NP} \gtrsim 2 \,{\rm TeV}$$

<sup>10</sup> Scale [TeV] <sup>104</sup> Scale [TeV]

 $10^{2}$ 

10<sup>1</sup>

 $10^{0}$ 





- The SM works well at the TeV scale:
- The Higgs boson is SM-like:

$$\delta\kappa \sim \frac{v^2}{M_{\rm NP}^2} g_{\star}^2 \lesssim 5\%$$
  $\longrightarrow$   $M_{\rm NP} \gtrsim g_{\star} \,{\rm TeV}$ 

The EW sector is SM-like:

7

$$\delta \varepsilon \sim \frac{m_W^2}{M_{\rm NP}^2} \lesssim {\rm few} \times 10^{-3} \qquad \longrightarrow \qquad M_{\rm NP} \gtrsim 2 \,{\rm TeV}$$

**10<sup>6</sup>** 

10<sup>5</sup>

**10**<sup>4</sup>

**10<sup>3</sup>** 

 $10^{2}$ 

10<sup>1</sup> 10<sup>0</sup>

Scale [TeV]





# The flavor puzzle

SM Yukawa couplings have an extremely hierarchical pattern



- What's the origin of this flavor structure? Why are there 3 families?
- Most likely NP in the Higgs sector couples to SM fermions in similar way...



- Symmetries: e.g. MFV or U(2) models
   Barbieri et al. 2011; Isidori et al. 2017; ...
- Dynamics: different NP scales for different families, related to Higgs Panico, Pomarol 2016; Bordone et al. 2017, etc...

with O(1) couplings

 $M_{\rm NP} \lesssim 3 \,{\rm TeV}$ 

SMEFT with CKM-like suppression (U(2)<sup>3</sup> flavor symmetry):



Allwicher, Cornella, Isidori, Stefanek 2311.00020

- Where do we stand?
  - SMEFT with CKM-like suppression (U(2)<sup>3</sup> flavor symmetry):
  - + mild suppression of light gen. interactions
  - + some flavor alignment





Allwicher, Cornella, Isidori, Stefanek 2311.00020

## Third-generation flavor processes

+ Semi-leptonic charged-current decays  $b \rightarrow c \tau \nu$ 



Example: left-handed current, EW triplet (scalar/tensor currents also possible, more constrained) Third-family operator after CKM rotation  $q_L^3 = \begin{pmatrix} V_{i3}u_L^i \\ b_L \end{pmatrix}$  $(\bar{q}_L^3 \gamma_\mu \sigma^a q_L^3)(\bar{\ell}_L^3 \gamma^\mu \sigma^a \ell_L^3) = V_{cb}(\bar{b}_L \gamma_\mu c_L)(\bar{\nu}_\tau \gamma^\mu \tau_L) + \cdots$ 



Today: effect ~ 10% of SM

$$M_{\rm NP} = \Lambda \times g_{\star} \gtrsim 1.2 \,{\rm TeV} \times g_{\star}$$

+ Semi-leptonic charged-current decays  $b \rightarrow c \tau \nu$ 



• Example: left-handed current, EW triplet (scalar/tensor currents also possible, more constrained) Third-family operator after CKM rotation  $q_L^3 = \begin{pmatrix} V_{i3}u_L^i \\ b_L \end{pmatrix}$  $(\bar{q}_L^3 \gamma_\mu \sigma^a q_L^3)(\bar{\ell}_L^3 \gamma^\mu \sigma^a \ell_L^3) = V_{cb}(\bar{b}_L \gamma_\mu c_L)(\bar{\nu}_\tau \gamma^\mu \tau_L) + \cdots$ 



Belle II prospects: ~ 1% of SM

$$M_{\rm NP} = \Lambda \times g_{\star} \gtrsim 4 \,{\rm TeV} \times g_{\star}$$

talk by F. Forti on Wednesday

# **Correlations: neutral currents**



Flavor misalignment generates FCNC:

$$\bar{q}_L^3 \gamma_\mu \sigma^a q_L^3) (\bar{\ell}_L^3 \gamma^\mu \sigma^a \ell_L^3) = V_{cb} (1 - \theta) (\bar{b}_L \gamma_\mu c_L) (\bar{\nu}_\tau \gamma^\mu \tau_L)$$

$$+V_{ts}\theta\left[(\bar{b}_L\gamma_\mu s_L)(\bar{\tau}_L\gamma^\mu\tau_L)-(\bar{b}_L\gamma_\mu s_L)(\bar{\nu}_\tau\gamma^\mu\nu_\tau)\right]+\cdots$$

related by SU(2)L



#### + $b \rightarrow s \nu \nu$ will be measured precisely by Belle II

| Observables                                       | Belle II $50  \mathrm{ab}^{-2}$ |
|---------------------------------------------------|---------------------------------|
| $\operatorname{Br}(B^+ \to K^+ \nu \bar{\nu})$    | 11%                             |
| ${\rm Br}(B^0 \to K^{*0} \nu \bar{\nu})$          | 9.6%                            |
| $\operatorname{Br}(B^+ \to K^{*+} \nu \bar{\nu})$ | 9.3%                            |



#### + $b \rightarrow s\tau\tau$ possible at FCC-ee!

| Decay mode/Experiment                       | Belle II $(50/ab)$ | LHCb Upgr. $(50/fb)$ | FCC-ee           |         |    |
|---------------------------------------------|--------------------|----------------------|------------------|---------|----|
| $\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$ | $\sim 10$          | _                    | $\sim 1000$      |         |    |
| $B_s \rightarrow \mu^+ \mu^-$               | n/a                | $\sim 500$           | $\sim 800$       |         |    |
| $\mathcal{B}(B_s \to \tau^+ \tau^-)$        |                    |                      |                  |         |    |
| $B^+ \to \tau^+ \nu$                        | 7%                 | —                    | 2%               |         |    |
| $B_c^+ \to \tau^+ \nu$                      | n/a                | _                    | <sup>5%</sup> S. | Monteil | 13 |

# **Correlations: second generation**



 $R_{D^{(*)}} - 1$ 

# High-pT searches at LHC



+ The same operators can be probed with high-pT processes at LHC, e.g.  $bb \rightarrow \tau \tau$ ,  $bc \rightarrow \tau \nu$ 

Faroughy, Greljo, Kamenik 2016 Greljo, Camalich, Ruiz 2018

- Strong suppression at high invariant masses due to proton PDF
- Flavor suppression

HL-LHC will not probe the full parameter space testable by rare decays



+ Higgs & EWSB physics ↔ EW precision measurements



$$\begin{aligned} \mathcal{O}_W &= \left( H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu} & \sin^2 \theta_{\text{eff}} \\ \mathcal{O}_B &= \left( H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \end{aligned}$$

 FCC-ee: 6 x 10<sup>12</sup> Z bosons ultimate precision at the Z pole, limited by syst. and th. errors

$$\Delta \hat{S} \sim \frac{m_W^2}{M_{\rm NP}^2} \lesssim {\rm few} \times 10^{-5}$$

$$M_{\rm NP} \gtrsim 12 \,{\rm TeV}$$

|   | Current | HL-LHC | II    | $LC_{250}$             | CEPC   | FCC-ee | CLIC <sub>380</sub> |                         |  |
|---|---------|--------|-------|------------------------|--------|--------|---------------------|-------------------------|--|
|   |         |        |       | (& ILC <sub>91</sub> ) |        |        |                     | (& CLIC <sub>91</sub> ) |  |
| S | 0.13    | 0.053  | 0.012 | 0.009                  | 0.0068 | 0.0038 | 0.032               | 0.011                   |  |
| Т | 0.08    | 0.041  | 0.014 | 0.013                  | 0.0072 | 0.0022 | 0.023               | 0.012                   |  |

Why 10<sup>12</sup> Z bosons?

- Lepton asymmetries are small: N<sub>events</sub> = N<sub>Z</sub> × BR(Z → ℓ<sup>+</sup>ℓ<sup>-</sup>) × A<sub>ℓ</sub> ~ 3 × 10<sup>-4</sup> N<sub>Z</sub>
   ⇒ N<sub>Z</sub> ≈ 10<sup>12</sup> for 10<sup>-4</sup> precision.
- + In general, several more operators enter the EW fit

4-fermion interactions affect EW observables through one loop RGE

 $H \xrightarrow{H} I_{L} \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a}$   $H \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a}$   $I \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a}$   $I \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a}$   $I \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L}^{a}$   $I \xrightarrow{l_{L}^{a}} I_{L}^{a} \xrightarrow{l_{L}^{a}} I_{L$ 

# **EW** precision

✤ U(2)<sup>3</sup> flavor symmetry + suppression of light gen. + some flavor alignment



Allwicher, Cornella, Isidori, Stefanek 2311.00020

- Precision measurements need to be matched with SM theory predictions of comparable precision
- Already now, huge rates of b, c hadrons at LHC not always reflected in improvement of physics reach, due to QCD (e.g. hadronic channels, V<sub>cb</sub> puzzle in semi-leptonic decays, K and D mixing, ...)

High rate measurements eventually limited by systematics

We'll need to measure physics at higher energy to improve!

# EW precision at high-energy

• NP effects are more important at high energies  $\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{\Lambda^2} \sum C_i \mathscr{O}_i$ 



... taken to the extreme at a  $\mu$ -collider with 10's of TeV!

"Towards a muon collider" Accettura et al. 2303.08533

talk by Karri on Thursday

### Example: high-energy di-bosons

+ Longitudinal  $2 \rightarrow 2$  scattering amplitudes at high energy:



Determined by the same two operators that affect also EWPT (in flavor-universal theories):

$$\mathcal{O}_W = \left( H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$$

$$\mathcal{O}_B = \left( H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$$

related with Z-pole observables

$$\hat{S} = m_W^2 (C_W + C_B)$$

LEP:  $10^{-3}$ , FCC: few  $10^{-5}$  MuC:  $10^{-6}$ 

precision of measurement

+ All EW multiplets contribute to high-energy  $2 \rightarrow 2$  fermion scattering: effects that grow with energy, can be tested at  $\mu$  collider



can be WIMP dark matter if M ~ few TeV

# EW radiation

**EW radiation** becomes important at multi-TeV energies! Especially relevant for muon collider, but also FCC-hh...

- $m_{W,Z} \ll E: \gamma, W, Z$  are all similar!
- Multiple gauge boson emission is not suppressed

Sudakov factor 
$$\frac{\alpha}{4\pi} \log^2 \left(\frac{E^2}{m_W^2}\right) \times \text{Casimir} \approx 1 \text{ for E} \sim 10 \text{ TeV}$$

Which cross-section? Exclusive, (semi-)inclusive, depending on amount of radiation included see Chen, Glioti, Rattazzi, Ricci, Wulzer 2202.10509

Could one define EW jets? Neutrino "jet tagging"?



# **EW** radiation



#### Gauge boson radiation important:

soft W emission allows to access charged processes  $\ell \nu \to W^{\pm}Z, W^{\pm}H$ 





- contains new physical information!
- need to properly define inclusive observables, resummation of logs, ...

"effective neutrino approximation"

# Higgs factories

- All proposed future colliders will be able to produce millions of Higgses
  - → study single Higgs couplings with below percent precision!

![](_page_27_Figure_3.jpeg)

talk by Paolo on Thursday

# Higgs factories

+ Low-energy e+e- factories:  $e^+e^- \rightarrow Zh @ 240 \text{ GeV}$ 

![](_page_28_Picture_2.jpeg)

- measure the recoil (missing mass) of h against Z
- + *direct* measurement of  $gV \rightarrow$  other couplings + width
- + A high-energy lepton collider is a "vector boson collider"

![](_page_28_Figure_6.jpeg)

- potentially huge single H production (10<sup>7</sup>-10<sup>8</sup> at 10-30 TeV)
- hard neutrinos from W-fusion not seen
   10<sup>2</sup>
   5
   ZZ fusion (forward lepton tagging) could still measure width

![](_page_28_Figure_9.jpeg)

**Higgs factories** 

| <i>к</i> -0            | HL-LHC | LHeC | HE  | -LHC |             | ILC       |           |            | CLIC | ;    | CEPC | FC   | C-ee      | FCC-ee/ | $\mu^+\mu^-$ |
|------------------------|--------|------|-----|------|-------------|-----------|-----------|------------|------|------|------|------|-----------|---------|--------------|
| fit                    |        |      | S2  | S2'  | 250         | 500       | 1000      | 380        | 1500 | 3000 |      | 240  | 365       | eh/hh   | 10000        |
| $\kappa_W$ [%]         | 1.7    | 0.75 | 1.4 | 0.98 | 1.8         | 0.29      | 0.24      | 0.86       | 0.16 | 0.11 | 1.3  | 1.3  | 0.43      | 0.14    | 0.1          |
| $\kappa_Z \ [\%]$      | 1.5    | 1.2  | 1.3 | 0.9  | 0.29        | 0.23      | 0.22      | 0.5        | 0.26 | 0.23 | 0.14 | 0.20 | 0.17      | 0.12    | 0.4          |
| $\kappa_g \ [\%]$      | 2.3    | 3.6  | 1.9 | 1.2  | 2.3         | 0.97      | 0.66      | 2.5        | 1.3  | 0.9  | 1.5  | 1.7  | 1.0       | 0.49    | 0.7          |
| $\kappa_{\gamma}$ [%]  | 1.9    | 7.6  | 1.6 | 1.2  | 6.7         | 3.4       | 1.9       | 98*        | 5.0  | 2.2  | 3.7  | 4.7  | 3.9       | 0.29    | 0.8          |
| $\kappa_{Z\gamma}$ [%] | 10.    | _    | 5.7 | 3.8  | 99 <b>*</b> | $86\star$ | $85\star$ | $120\star$ | 15   | 6.9  | 8.2  | 81*  | $75\star$ | 0.69    | 7.2          |
| $\kappa_c \ [\%]$      | -      | 4.1  | -   | —    | 2.5         | 1.3       | 0.9       | 4.3        | 1.8  | 1.4  | 2.2  | 1.8  | 1.3       | 0.95    | 2.3          |
| $\kappa_t \ [\%]$      | 3.3    | _    | 2.8 | 1.7  | _           | 6.9       | 1.6       | _          | —    | 2.7  | -    |      | _         | 1.0     | 3.1          |
| $\kappa_b \ [\%]$      | 3.6    | 2.1  | 3.2 | 2.3  | 1.8         | 0.58      | 0.48      | 1.9        | 0.46 | 0.37 | 1.2  | 1.3  | 0.67      | 0.43    | 0.4          |
| $\kappa_{\mu}$ [%]     | 4.6    | _    | 2.5 | 1.7  | 15          | 9.4       | 6.2       | $320\star$ | 13   | 5.8  | 8.9  | 10   | 8.9       | 0.41    | 3.4          |
| $\kappa_{	au}$ [%]     | 1.9    | 3.3  | 1.5 | 1.1  | 1.9         | 0.70      | 0.57      | 3.0        | 1.3  | 0.88 | 1.3  | 1.4  | 0.73      | 0.44    | 0.6          |

dominant channels: ~ few ‰

rare modes: high rate helps!

2103.14043

What NP scales will we test with the Higgs?

$$\delta\kappa \sim \frac{v^2}{M_{\rm NP}^2} g_\star^2 \lesssim 0.2\%$$

 $\bullet \quad M_{\rm NP} \gtrsim g_{\star} \text{ 6 TeV}$ 

![](_page_29_Figure_8.jpeg)

### **Direct vs indirect**

Compare single Higgs couplings measurements with reach of direct searches

• Example: singlet scalar  $\mathscr{L}_{int} \sim \phi |H|^2$ 

 $\phi$  is like a heavy Higgs with narrow width + hh decay

![](_page_30_Figure_4.jpeg)

28

+ Measurement of trilinear coupling: access to the Higgs potential

![](_page_31_Figure_2.jpeg)

 Precise determination *only* possible at high-energy machines: need high rate!
 100 TeV FCC-hh or multi-TeV Muon collider

Mangano et al. 2004.03505 B, Franceschini, Wulzer 2012.11555 Costantini et al. 2005.10289 Han et al. 2008.12204 CLIC 1901.05897

- very poorly known today!
- HL-LHC will only reach 50% precision on SM value

![](_page_31_Figure_8.jpeg)

# High rate probes

High rate: more events = better precision

![](_page_32_Figure_2.jpeg)

A High Energy Lepton Collider is a "vector boson collider"

For "soft" SM final state  $\hat{s} \sim m_{\rm EW}^2$ cross-section is enhanced

Dawson 1985

Above few TeV the VBF cross-section dominates over the hard  $2 \rightarrow 2$ 

 Huge single Higgs rate in vector-boson-fusion: 10<sup>7</sup>-10<sup>8</sup> Higgs bosons at 10-30 TeV

![](_page_32_Figure_8.jpeg)

+ Depends on h<sup>3</sup> coupling  $\kappa_3$  but also on W-boson couplings  $\kappa_W$ ,  $\kappa_{WW}$ :

![](_page_33_Figure_2.jpeg)

large degeneracy in total cross-section: coefficients not determined from *hh* production alone

- Depends on h<sup>3</sup> coupling  $\kappa_3$  but also on W-boson couplings  $\kappa_W$ ,  $\kappa_{WW}$ :
- 1 0 Two dim. 6 operators:

$$\mathcal{O}_6 = -\lambda |H|^6$$
  $\mathcal{O}_H = \frac{1}{2} \left( \partial_\mu |H|^2 \right)^2$ 

$$\kappa_3 = 1 + v^2 \left( C_6 - \frac{3}{2} C_H \right) \qquad \kappa_W = 1 - v^2 C_H / 2 \qquad \kappa_{WW} = 1 - 2v^2 C_H$$

$$\begin{array}{c} 0.04 \\ 0.02 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.$$

large degeneracy in total cross-section: coefficients not determined from hh production alone

- Depends on h<sup>3</sup> coupling  $\kappa_3$  but also on W-boson couplings  $\kappa_W$ ,  $\kappa_{WW}$ :
- Two dim. 6 operators:

$$\mathcal{O}_6 = -\lambda |H|^6$$
  $\mathcal{O}_H = \frac{1}{2} \left( \partial_\mu |H|^2 \right)^2$ 

$$\kappa_3 = 1 + v^2 \left( C_6 - \frac{3}{2} C_H \right) \qquad \kappa_W = 1 - v^2 C_H / 2$$

$$\begin{array}{c} 0.04 \\ 0.02 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.5 \\ 1.0 \\ 0.0 \\ 0.5 \\ 0.5 \\ 1.0 \\ 0.0 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5$$

large degeneracy in total cross-section: coefficients not determined from *hh* production alone

 $\kappa_{WW} = 1 - 2v^2 C_H$ 

1

O<sub>H</sub> can also be constrained from single Higgs couplings:

 $\Delta \kappa_{V.f} = v^2 C_H / 2 \lesssim \text{few} \times 10^{-3}$ 

# Double Higgs at high mass

• NP contribution from  $\mathcal{O}_H$  (equivalently  $\kappa_W, \kappa_{WW}$ ) grows as E<sup>2</sup>: high mass tail gives a *direct* measurement of  $C_H$ 

High-energy WW  $\rightarrow hh$  more sensitive than Higgs pole physics at energies  $\gtrsim 10$  TeV

![](_page_36_Figure_3.jpeg)

![](_page_36_Figure_4.jpeg)

 $\mu^+\mu^- \to hh\nu\bar{\nu}$ 

Double Higgs at high mass

- + SM Effective Theory:  $\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum C_i \mathscr{O}_i^{(6)} + \cdots$
- + Trilinear coupling is affected by two operators:  $\kappa_3 = 1 + v^2 \left( C_6 \frac{3}{2} C_H \right)$

$$\mathcal{O}_6 = -\lambda |H|^6$$
  $\mathcal{O}_H = \frac{1}{2} \left( \partial_\mu |H|^2 \right)^2$ 

Differential analysis in  $p_T$  and  $M_{hh}$ :

![](_page_37_Figure_5.jpeg)

33

- + Long-term goal of particle physics: explore the 10+ TeV scale.
- Precision SM measurements might be the quickest way...
- Two complementary paths to precision:

![](_page_38_Picture_4.jpeg)

Flavor: rare decays w/ 3rd family, neutrino modes

Electroweak: Z-pole precision, high-energy probes, radiation

**Higgs:** couplings, self-interaction, high-pT probes

- + Long-term goal of particle physics: explore the 10+ TeV scale.
- Precision SM measurements might be the quickest way...
- Two complementary paths to precision:

![](_page_39_Picture_4.jpeg)

Flavor: rare decays w/ 3rd family, neutrino modes

Electroweak: Z-pole precision, high-energy probes, radiation

**Higgs:** couplings, self-interaction, high-pT probes

#### Xin cảm ơn!