

Advanced computing and software for HEP

Yutaro liyama ICEPP, The University of Tokyo

Windows on the Universe 30th Anniversary of the Rencontres de Vietnam

Computing is integral to HEP

Data acquisition

Central processing / Simulation

Analysis

Computing is integral to HEP

Data acquisition

Central processing / Simulation

Analysis

Computing is integral to HEP

Data acquisition

Central processing / Simulation

Analysis

Investment in advanced computing pays off

Example: CMS two-tiered trigger

Hardware (L1T) \rightarrow CPU farm (HLT) when

"Current practice for large general-purpose colloquially referred to as the "Level-2" and "Level-3" trigger."

 \Rightarrow Decision based on Moore's law scaling.

2007. LHC * Advanced computing ca. 2000

CMS Data Acquisition and High-Level Trigger TDR (2002)

Computing technology evolves fast; be nimble & bold

- experiments ... is to use at least two more entities,
- = more (complex) compute on faster processors

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

Moore's law still holds for now

New plot and data collected for 2010-2021 by K. Rupp

Moore's law still holds for now

But clock frequency has been flat for 15 years

New plot and data collected for 2010-2021 by K. Rupp

Moore's law still holds for now

But clock frequency has been flat for 15 years

Many-core has become the norm

New plot and data collected for 2010-2021 by K. Rupp

"Advanced computing" means something different now

Moore's law still holds for now

But clock frequency has been flat for 15 years

Many-core has become the norm

HEP implications - absolute needs

- CPU need jumps up in the HL-LHC era
 - More recorded data
 → More reconstruction
 - → More simulation
 - Higher order simulation
- Capacity scaling not sufficient
- Computing techniques must be updated

HEP implications - opportunities

- Machine learning for all sorts of applications
- Acceleration with GPU etc.
 - Faster analysis (event selection, fitting, ...)
 - Higher trigger bandwidth
- On- / near-detector intelligence
- Efficient and accurate simulation

Many interesting ideas reported at CHEP 2023

Technological enablers

Graphical processing units

What they are:

Many (O(1000)) processor cores with simple instructions + fast memory

 \rightarrow Optimized for ~identical operations on elements of large arrays

Applications:

- Neural network evaluation \rightarrow deep learning
- Cellular automaton \rightarrow track seed finding, clustering
- Fitting
- Any parallel calculation over arrays

References: 2008.13461 Rembser, CHEP2023

AI ASICs and other specialized chips

TPUs, IPUs, ...: Different optimizations of parallel processors

Neuromorphic processors

- Artificial neuron fires asynchronously only when input sum exceeds threshold \rightarrow Low power, low latency
- Neurons updated on the fly \rightarrow adaptive

Reduced numeric precision Hard-wired matrix operation

High-performance computing

What it is:

A cluster of high-spec (often custom-built) compute nodes with fast interconnect

→ Makes a cluster look like a single very-many-core computer

Applications:

- Multiprocess tasks
 - Recent HPCs tend to be GPU clusters
 → Large-scale ML training
- HEP tasks not best suited, but investments in compute are increasingly concentrated on HPCs
 → Need to learn to use them

10

with fast interconnect Iter

Machine learning

- *The* biggest advancement of the past decade
- Must be mentioned here, but already covered by Matt
- Large language models?

Differentiable programming

Two enablers of deep learning:

- Parallel computation
- Gradient-descent optimization
 - → Powered by auto-differentiation

What can we calculate with derivatives?

- Analysis sensitivity as a function of UV m
- Reconstruction efficiency as a function c
- Limits / significances as a function of cal

. . .

def func(x): return x * x + 3 * x func(2) # = 10

G. Singh, CHEP2023

Quantum computation

And now for something completely different...

"Quantum circuit model" computer:

- Comprises *n* two-level quantum systems
 - Two levels labeled as $|0\rangle$ and $|1\rangle$
- Can prepare the systems collectively into an initial state $|0\rangle^{\otimes n}$
- Can apply well-defined unitary operations on systems in arbitrary sequences
- Allows projective measurement of system states in the $\{|0\rangle, |1\rangle\}$ basis

"Quantum circuit model" computer:

- Comprises n two-level quantum systems
 - Two levels labeled as $|0\rangle$ and $|1\rangle$
- Can prepare the systems \mathcal{A} lectively into an initial state $|0\rangle^{\otimes n}$
- Can apply well-defined initary operations on systems in arbitrary sequences
- Allows projective measurement of system states in the $\{|0\rangle, |1\rangle\}$ basis

qubits

- "Quantum circuit model" computer:
- Comprises *n* two-level quantum systems
 - Two levels labeled as $|0\rangle$ and $|1\rangle$
- Can prepare the systems collectively into an initial state $|0\rangle^{\otimes n}$
- Can apply well-defined unitary operations on systems in arbitrary sequences
- Allows projective measurement of system states in the $\{|0\rangle, |1\rangle\}$ basis

14

qubits

- "Quantum circuit model" computer:
- Comprises *n* two-level quantum systems
 - Two levels labeled as $|0\rangle$ and $|1\rangle$
- Can prepare the systems collectively into an initial state $|0\rangle^{\otimes n}$
- Can apply well-defined unitary operations on systems in arbitrary sequences
- Allows projective measurement of system states in the $\{|0\rangle, |1\rangle\}$ basis

qubits

quantum gates $0\rangle^{\otimes n}$ arbitrary sequences $0\rangle, |1\rangle$ basis

quantum circuits

- "Quantum circuit model" computer:
- Comprises *n* two-level quantum systems
 - Two levels labeled as $|0\rangle$ and $|1\rangle$
- Can prepare the systems collectively into an initial state $|0\rangle^{\otimes n}$
- Can apply well-defined unitary operations on systems in arbitrary sequences
- Allows projective measurement of system states in the $\{|0\rangle, |1\rangle\}$ basis

qubits

quantum gates $0\rangle^{\otimes n}$ arbitrary sequences $0\rangle, |1\rangle$ basis

quantum circuits

Exponential dimensions

- *n*-qubit Hilbert space: 2^{*n*}-dimensional
- $|\psi\rangle = \psi_0 |00...00\rangle + \psi_1 |00...01\rangle + \cdots + \psi_{2^n-1} |11...11\rangle$
- In principle we can create arbitrary states with gate operations.

 \rightarrow A computer with $2^{\mathcal{O}(100)}$ parameters! cf. Number of atoms in the observable universe $\sim 2^{270}$

Exponential dimensions

- *n*-qubit Hilbert space: 2^{*n*}-dimensional
- $|\psi\rangle = \psi_0 |00...00\rangle + \psi_1 |00...01\rangle + \cdots + \psi_{2^n-1} |11...11\rangle$
- In principle we can create arbitrary states with gate operations.

 \rightarrow A computer with $2^{\mathcal{O}(100)}$ parameters! cf. Number of atoms in the observable universe $\sim 2^{270}$

Not quite.

Exponential dimensions

- *n*-qubit Hilbert space: 2^{*n*}-dimensional
- $|\psi\rangle = \psi_0 |00...00\rangle + \psi_1 |00...01\rangle + \cdots + \psi_{2^n-1} |11...11\rangle$
- In principle we can create arbitrary states with gate operations.

 \rightarrow A computer with $2^{\mathcal{O}(100)}$ parameters! cf. Number of atoms in the observable universe $\sim 2^{270}$

Not quite.

- Need exponentially many gates to manipulate the qubits over full space
- We can only measure $|\psi_i|^2$
- \rightarrow "Quantum advantage" only for specific classes of problems

Basic usage

Basic usage

× Many trials

Basic usage

Error correction and mitigation

- Qubits must be controllable \rightarrow Not an isolated system \rightarrow Decoherence
- Gate operations = analog control
- \Rightarrow Lots of errors occur at device level

Real-time error correction required for realistic-depth circuits

Error correction is coming:

Article

Suppressing quantum errors by scaling a surface code logical qubit

https://doi.org/10.1038/s41586-022-05434-1	Google Quantum AI*
Received: 13 July 2022	
Accepted: 10 October 2022	Practical quantum computing will require error rates well below those achievable with physical qubits. Quantum error correction ^{1,2} offers a path to algorithmically relevant error rates by encoding logical qubits within many physical qubits, for which increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low for logical performance to improve with increasing code size. Here we report the
Published online: 22 February 2023	
Open access	
Check for updates	
	measurement of logical qubit performance scaling across several code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.

Google AI, Nature 614, 676 (2023)

We find that our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, in terms of both logical erro

But also:

Article

Evidence for the utility of quantum computing before fault tolerance

https://doi.org/10.1038/s41586-023-06096-3	Youngseok Kim ¹⁶ , Andrew Eddins ²⁴ , Sajant Anand ⁹ , Ken X Sami Rosenblatt ¹ , Hasan Nayfeh ¹ , Yantao Wu ³⁴ , Michael Zalet Abhinav Kandala ¹² Ouantum computing promises to offer substantial speed-ups over its classical
Received: 24 February 2023	
Accepted: 18 April 2023	
Published online: 14 June 2023	
Open access	counterpart for certain problems. However, the greatest impediment to realizing its
Oheck for updates	full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that th represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize ¹ and controllably manipulate noise across such a large device. We establish the accuracy
Kim et al., I	Nature 618, 500 (2023)

Application: Lattice QFT simulation

Simple recipe:

Jordan et al. Science 336, 1130 (2012)

- 1. Discretize space
- 2. Represent field at each node / link with qubits
- 3. Prepare initial state
- 4. Express time evolution with gates
- 5. Simulate and measure
- \rightarrow Full dynamics simulation of quantum fields!

Schwinger model (1+1D QED) demonstrated in 2016 on a 4-bit trapped ion system

Martinez et al. Nature 534, 516 (2016)

 $\{\hat{G}_i\}$

Vacuum

Simple recipe is insufficient

In practice:

- Long simulation
 → need error correction
- Requires many qubits

Ideas to lower qubit requirement:

- EFT: division of phase space (2102.05044)
- Particle-based field representation (2012.00020)

Number of lattice sites $N^3 \sim 10^{14}$

 \checkmark

 $\{x, y\}$

Parametric gate "layers"

 \checkmark

Parametric gate "layers"

 \checkmark

Parametric gate "layers"

 \checkmark

 $L(f_{\theta}(x), y), \nabla_{\theta}L$ $f_{\theta}(x)$

 \checkmark

 $L(f_{\theta}(x), y), \nabla_{\theta}L$ $c_{\theta}(x)$

- → Quantum-classical hybrid computation
- \rightarrow Quantum part is short and simple; near-term feasible

 $L(f_{\theta}(x), y), \nabla_{\theta}L$

- → Quantum-classical hybrid computation
- \rightarrow Quantum part is short and simple; near-term feasible

 $L(f_{\theta}(x), y), \nabla_{\theta}L$

Quantum advantage? Very active research ongoing

Early HEP adopters

- Wu et al. (JPhys G 2021)
 - Classification of LHC ttH&Hµµ events vs background
- Terashi et al. (CSBS 2021)
 - Classification of LHC SUSY events
- Blance and Spannowsky (JHEP 2020)
 - Classification of Z'→tt against continuum bkg.
- Gianelle et al. (JHEP 2022)
 - b-jet charge identification

Quantum GAN with parametric circuits:

- Chang et al. (ACAT 2021)
 - Calorimeter simulation
- Bravo-Prieto et al. (Quantum 2022)
 - Event generation

Summary

- Computing and software evolves fast \rightarrow Investment in cutting-edge technologies pays off
- Advanced computing in 2023: heterogeneous, accelerated
 - Driven by need: cannot handle HL-LHC by stacking commodity CPU
 - Also by benefits: novel techniques bring new opportunities
- Reviewed some technologies; left out a lot more
- Noisy quantum computers are available for use
- Exciting outlook for error-corrected quantum computers
 - Also exciting to identify the use cases of noisy devices