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Investment in advanced computing pays off
3

CMS Data Acquisition and 
High-Level Trigger TDR 

(2002)

Example: CMS two-tiered trigger 

Hardware (L1T) → CPU farm (HLT) 
when 

“Current practice for large general-purpose 
experiments ... is to use at least two more entities, 
colloquially referred to as the “Level-2” and 
“Level-3” trigger.” 

⇒ Decision based on Moore’s law scaling. 
* Advanced computing ca. 2000 
= more (complex) compute on faster processors

Computing technology evolves fast; be nimble & bold
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Processors are not getting faster
4

But clock frequency has been 
flat for 15 years

Many-core has become the norm

“Advanced computing” means something different now

Moore's law still holds for now



HEP implications - absolute needs
• CPU need jumps up in the HL-LHC era 

• More recorded data 
→ More reconstruction 
→ More simulation 

• Higher order simulation 
• Capacity scaling not sufficient 
• Computing techniques must be updated
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HEP implications - opportunities
• Machine learning - for all sorts of applications 
• Acceleration with GPU etc. 

• Faster analysis (event selection, fitting, ...) 
• Higher trigger bandwidth 

• On- / near-detector intelligence 
• Efficient and accurate simulation
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Many interesting ideas reported at CHEP 2023



Technological enablers



Graphical processing units
What they are:
Many (O(1000)) processor cores with simple instructions + fast memory 
→ Optimized for ~identical operations on elements of large arrays 
Applications:
• Neural network evaluation → deep learning 
• Cellular automaton → track seed finding, clustering 
• Fitting 
• Any parallel calculation over arrays
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AI ASICs and other specialized chips
TPUs, IPUs, ...: Different optimizations of parallel processors 

Neuromorphic processors
• Artificial neuron fires asynchronously only when 

input sum exceeds threshold 
→ Low power, low latency 

• Neurons updated on the fly → adaptive

9

• Reduced numeric precision 
• Hard-wired matrix operation 
• etc.

Edge TPU: small form factor + low power consumption



High-performance computing
What it is:
A cluster of high-spec (often custom-built) compute nodes with fast interconnect 
→ Makes a cluster look like a single very-many-core computer 
Applications:
• Multiprocess tasks 

• Recent HPCs tend to be GPU clusters 
→ Large-scale ML training 

• HEP tasks not best suited, but investments in compute 
are increasingly concentrated on HPCs 
→ Need to learn to use them
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Machine learning
• The biggest advancement of the past decade 
• Must be mentioned here, but already covered by Matt 
• Large language models?
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Differentiable programming
Two enablers of deep learning: 
• Parallel computation 
• Gradient-descent optimization 
→ Powered by auto-differentiation 

What can we calculate with derivatives? 
• Analysis sensitivity as a function of UV model parameters 
• Reconstruction efficiency as a function of detector geometry 
• Limits / significances as a function of calibration constants 

                                                            event selection 
                                                            ...
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def func(x):
    return x * x + 3 * x

func(2) # = 10
grad(func)(2) # 2x+3 = 7

(a) Before ATLAS Run 1 (b) After ATLAS Run 1

Figure 14: The density of pMSSM points projected onto the plane of dark matter relic density versus LSP mass,
before and after the constraints from the search analyses. The colours labelling the di↵erent LSP types, as defined
in Table 4.

searches for electroweak production. Further study shows that, for the sampling of pMSSM points made
in this paper, the analyses with the largest regions of unique sensitivity are the 0-lepton + 2–6 jets + Emiss

T
analysis [58], and the Disappearing Track analysis [72]. Nevertheless some care is required in interpreting
these results. The degree of apparent overlap is subjective, in that it depends, in some cases sensitively, on
the metric used when sampling the pMSSM space. Even in cases where the apparent overlap appears to
be large, for example between the 0-lepton + 2–6 jets + Emiss

T and 0-lepton + 7–10 jets + Emiss
T analyses,

both searches are found to have regions of pMSSM space in which they provide unique sensitivity. The
Disappearing Track analysis is mostly sensitive to model points with a wino-like LSP, so an alternative
prior (or weighting by LSP type) of the sample model points would directly a↵ect the apparent relative
sensitivity of this analysis.

The overall fraction of model points within the pMSSM space excluded by each analysis for each of
the LSP types is shown in Table 7. Only the `h analysis is unable to constrain the pMSSM set with
the luminosity available. The lack of sensitivity for that analysis is not unexpected since for simplified
models it excludes only points with very light LSPs [70]. It should again be noted that the absolute
values of the fractions of model points excluded is strongly a↵ected by the prior sampling, in particular
by the upper mass bounds used for the scan in selecting the pMSSM input parameters (see Table 2).
The relative fractions of model points excluded by each analysis are a little more informative, but again
care is necessary in their interpretation since they too are sensitive to changes to the assumptions or
constraints applied to the initial model set. Nevertheless, the high sensitivity of the 0-lepton + 2–6 jets +
Emiss

T analysis for all LSP types, and the Disappearing Track analysis for models with a wino-like LSP is
unambiguous.

32
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No more need for 
toy MCs?

Refs: G. Singh, CHEP2023



Quantum computation



Introduction
“Quantum circuit model” computer: 
• Comprises  two-level quantum systems 

• Two levels labeled as  and  
• Can prepare the systems collectively into an initial state  

• Can apply well-defined unitary operations on systems in arbitrary sequences 
• Allows projective measurement of system states in the  basis

n
|0⟩ |1⟩

|0⟩⊗n

{ |0⟩, |1⟩}

14
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Exponential dimensions
• -qubit Hilbert space: -dimensionaln 2n

|ψ⟩ = ψ0 |00…00⟩ + ψ1 |00…01⟩ + ⋯ + ψ2n−1 |11…11⟩
• In principle we can create arbitrary states with gate operations.

15

→ A computer with  parameters! 
cf. Number of atoms in the observable universe ~ 2270

2𝒪(100)
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Exponential dimensions
• -qubit Hilbert space: -dimensionaln 2n

|ψ⟩ = ψ0 |00…00⟩ + ψ1 |00…01⟩ + ⋯ + ψ2n−1 |11…11⟩
• In principle we can create arbitrary states with gate operations.

Not quite.
• Need exponentially many gates to manipulate the qubits over full space
• We can only measure |ψj |

2

→ “Quantum advantage” only for specific classes of problems

15

→ A computer with  parameters! 
cf. Number of atoms in the observable universe ~ 2270

2𝒪(100)



Basic usage
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Basic usage
16

| initial⟩
Initialization

∑k ψk |k⟩
Gate instructions × Many trials

Measurement Get “ ” with 
probability 

j
|ψj|2

Analyze the distribution 
• Expectation value 
• Mode 
• etc.



Error correction and mitigation
• Qubits must be controllable → Not an isolated system → Decoherence 
• Gate operations = analog control 
⇒ Lots of errors occur at device level

17

Real-time error correction required for realistic-depth circuits
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Suppressing quantum errors by scaling a 
surface code logical qubit

Google Quantum AI*

Practical quantum computing will require error rates well below those achievable 
with physical qubits. Quantum error correction1,2 o!ers a path to algorithmically 
relevant error rates by encoding logical qubits within many physical qubits,  
for which increasing the number of physical qubits enhances protection against 
physical errors. However, introducing more qubits also increases the number  
of error sources, so the density of errors must be su"ciently low for logical 
performance to improve with increasing code size. Here we report the 
measurement of logical qubit performance scaling across several code sizes,  
and demonstrate that our system of superconducting qubits has su"cient 
performance to overcome the additional errors from increasing qubit number.  
We #nd that our distance-5 surface code logical qubit modestly outperforms an 
ensemble of distance-3 logical qubits on average, in terms of both logical error 
probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared  
to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run 
a distance-25 repetition code and observe a 1.7 × 10−6 logical error per cycle 'oor set 
by a single high-energy event (1.6 × 10−7 excluding this event). We accurately model 
our experiment, extracting error budgets that highlight the biggest challenges  
for future systems. These results mark an experimental demonstration in which 
quantum error correction begins to improve performance with increasing qubit 
number, illuminating the path to reaching the logical error rates required for 
computation.

Since Feynman’s proposal to compute using quantum mechanics3, 
many potential applications have emerged, including factoring4, 
optimization5, machine learning6, quantum simulation7 and quan-
tum chemistry8. These applications often require billions of quantum 
operations9–11 and state-of-the-art quantum processors typically have 
error rates around 10−3 per gate12–17, far too high to execute such large 
circuits. Fortunately, quantum error correction can exponentially 
suppress the operational error rates in a quantum processor, at the 
expense of temporal and qubit overhead18,19.

Several works have reported quantum error correction on codes 
able to correct a single error, including the distance-3 Bacon–Shor20, 
colour21, five-qubit22, heavy-hexagon23 and surface24,25 codes, as well as 
continuous variable codes26–29. However, a crucial question remains of 
whether scaling up the error-correcting code size will reduce logical 
error rates in a real device. In theory, logical errors should be reduced if 
physical errors are sufficiently sparse in the quantum processor. In prac-
tice, demonstrating reduced logical error requires scaling up a device to 
support a code that can correct at least two errors, without sacrificing 
state-of-the-art performance. In this work we report a 72-qubit super-
conducting device supporting a 49-qubit distance-5 (d = 5) surface 
code that narrowly outperforms its average subset 17-qubit distance-3 
surface code, demonstrating a critical step towards scalable quantum 
error correction.

 
Surface codes with superconducting qubits
Surface codes30–34 are a family of quantum error-correcting codes that 
encode a logical qubit into the joint entangled state of a d × d square 
of physical qubits, referred to as data qubits. The logical qubit states 
are defined by a pair of anti-commuting logical observables XL and ZL. 
For the example shown in Fig. 1a, a ZL observable is encoded in the joint 
Z-basis parity of a line of qubits that traverses the lattice from top to 
bottom, and likewise an XL observable is encoded in the joint X-basis 
parity traversing left to right. This non-local encoding of information 
protects the logical qubit from local physical errors, provided we can 
detect and correct them.

To detect errors, we periodically measure X and Z parities of adjacent 
clusters of data qubits with the aid of d2 − 1 measure qubits interspersed 
throughout the lattice. As shown in Fig. 1b, each measure qubit interacts 
with its neighbouring data qubits to map the joint data qubit parity 
onto the measure qubit state, which is then measured. Each parity 
measurement, or stabilizer, commutes with the logical observables of 
the encoded qubit as well as every other stabilizer. Consequently, we 
can detect errors when parity measurements change unexpectedly, 
without disturbing the logical qubit state.

A decoder uses the history of stabilizer measurement outcomes to 
infer likely configurations of physical errors on the device. We can then 
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into a pair of disjoint error graphs, one each for X and Z errors31. These 
graphs are decoded efficiently using minimum-weight perfect match-
ing53 to select a single probable set of errors.

By contrast, a maximum-likelihood decoder considers all possible 
sets of errors consistent with the detection events, splits them into 
two groups on the basis of whether they flip the logical measurement, 
and chooses the group with the greater total likelihood. The two likeli-
hoods are each expressed as a tensor network contraction51,54,55 that 
exhaustively sums the probabilities of all sets of errors within each 
group. We can contract the network approximately, and verify that the 
approximation converges. This yields a decoder that is nearly optimal 
given the hypergraph error priors, but is considerably slower. Further 
improvements could come from a more accurate prior, or by incorpo-
rating more fine-grained measurement information47,56.

Figure 3 shows a comparison of the logical error performance 
of the distance-3 and distance-5 codes using the approximate 
maximum-likelihood decoder. As the ZXXZ variant of the surface code 
symmetrizes the X and Z bases, differences between the two bases’ 
logical error per cycle are small and attributable to spatial variations 
in physical error rates. Thus, for visual clarity, we report logical error 
probabilities averaged between the X and Z basis; the full dataset may 
be found in the Supplementary Information. Note that we do not 
post-select on leakage or high-energy events to capture the effects 
of realistic non-idealities on logical performance. Over all 25 cycles of 
error correction, the distance-5 code realizes lower logical error prob-
abilities pL than the average of the subset distance-3 codes.

We fit the logical fidelity F = 1 − 2pL to an exponential decay. We start 
the fit at t = 3 to avoid two phenomena that advantage the larger code: 
the lower detection probability during the first cycle relative to subse-
quent cycles (Fig. 2b,d), and the higher effective threshold caused by 
the confinement of errors to thin time slices in few-cycle experiments31. 
We obtain a logical error per cycle ε5 = (2.914 ± 0.016)% (1σ statistical 
and fit uncertainty) for the distance-5 code, compared to an average 
of ε3 = (3.028 ± 0.023)% for the subset distance-3 codes, a relative error 
reduction of about 4%. When decoding with the faster belief-matching 
decoder, we fit a logical error per cycle of (3.056 ± 0.015)% for the 
distance-5 code, compared to an average of (3.118 ± 0.025)% for the 
distance-3 codes, a relative error reduction of about 2%. We note that 
the distance-5 logical error per cycle is slightly higher than those of 
two of the distance-3 codes individually, and that leakage accumula-
tion may cause distance-5 performance to degrade faster than that of 
distance-3 as logical error probability approaches 50%.

In principle, the logical performance of a distance-5 code should improve 
faster than that of a distance-3 code as physical error rates decrease33. 
Over time, we improved our physical error rates, for example by opti-
mizing single- and two-qubit gates, measurement and data qubit idling 
(see Supplementary Information). In Fig. 3c, we show the corresponding 
performance progression of distance-5 and distance-3 codes. The larger 
code improved about twice as fast until finally overtaking the smaller 
code, validating the benefit of increased-distance protection in practice.

To understand the contributions of individual components to our 
logical error performance, we follow ref. 42 and simulate the distance-5 
and distance-3 codes while varying the physical error rates of the vari-
ous circuit components. As the logical-error-suppression factor

Λ ε ε= / (1)d d d d/( +2) +2

is approximately inversely proportional to the physical error rate, we 
can budget how much each physical error mechanism contributes to 
1/Λ3/5 (as shown in Fig. 4a) to assess scaling. This error budget shows 
that CZ error and data qubit decoherence during measurement and 
reset are dominant contributors.

Algorithmically relevant error rates
Even as known error sources are suppressed in future devices, new 
dominant error mechanisms may arise as lower logical error rates are 
realized. To test the behaviour of codes with substantially lower error 
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Fig. 3 | Logical error reduction. a, Logical error probability pL versus cycle 
comparing distance-5 (blue) to distance-3 (pink: four separate quadrants,  
red: average), all averaged over ZL and XL. Each individual data point represents 
100,000 repetitions. Solid line: fit to experimental average, t = 3 to 25 (see main 
text). Dotted line: comparison to Pauli+ simulation. b, Logical fidelity F = 1 − 2pL 
versus cycle, semilog plot. The datapoints and fits are the experimental averages 
and fits from a. c, Summary of experimental progression comparing logical error 
per cycle εd (specifically plotting 1 − εd) between distance-3 and distance-5, for 
which system improvements lead to faster improvement for distance-5 (see main 
text). Each open circle is a comparison to a specific distance-3 code, and filled 
circles average over several distance-3 codes measured in the same session. 
Markers are coloured chronologically from light to dark. Typical 1σ statistical 
and fit uncertainty is 0.02%, smaller than the points.
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Evidence for the utility of quantum 
computing before fault tolerance

Youngseok Kim1,6 ✉, Andrew Eddins2,6 ✉, Sajant Anand3, Ken Xuan Wei1, Ewout van den Berg1, 
Sami Rosenblatt1, Hasan Nayfeh1, Yantao Wu3,4, Michael Zaletel3,5, Kristan Temme1 & 
Abhinav Kandala1 ✉

Quantum computing promises to o!er substantial speed-ups over its classical 
counterpart for certain problems. However, the greatest impediment to realizing its 
full potential is noise that is inherent to these systems. The widely accepted solution 
to this challenge is the implementation of fault-tolerant quantum circuits, which is 
out of reach for current processors. Here we report experiments on a noisy 127-qubit 
processor and demonstrate the measurement of accurate expectation values for 
circuit volumes at a scale beyond brute-force classical computation. We argue that this 
represents evidence for the utility of quantum computing in a pre-fault-tolerant era. 
These experimental results are enabled by advances in the coherence and calibration 
of a superconducting processor at this scale and the ability to characterize1 and 
controllably manipulate noise across such a large device. We establish the accuracy  
of the measured expectation values by comparing them with the output of exactly 
veri"able circuits. In the regime of strong entanglement, the quantum computer 
provides correct results for which leading classical approximations such as pure-state- 
based 1D (matrix product states, MPS) and 2D (isometric tensor network states, 
isoTNS) tensor network methods2,3 break down. These experiments demonstrate a 
foundational tool for the realization of near-term quantum applications4,5.
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It is almost universally accepted that advanced quantum algorithms 
such as factoring6 or phase estimation7 will require quantum error cor-
rection. However, it is acutely debated whether processors available at 
present can be made sufficiently reliable to run other, shorter-depth 
quantum circuits at a scale that could provide an advantage for prac-
tical problems. At this point, the conventional expectation is that the 
implementation of even simple quantum circuits with the potential 
to exceed classical capabilities will have to wait until more advanced, 
fault-tolerant processors arrive. Despite the tremendous progress 
of quantum hardware in recent years, simple fidelity bounds8 sup-
port this bleak forecast; one estimates that a quantum circuit 100 
qubits wide by 100 gate-layers deep executed with 0.1% gate error 
yields a state fidelity less than 5 × 10−4. Nonetheless, the question 
remains whether properties of the ideal state can be accessed even 
with such low fidelities. The error-mitigation9,10 approach to near-term 
quantum advantage on noisy devices exactly addresses this ques-
tion, that is, that one can produce accurate expectation values from 
several different runs of the noisy quantum circuit using classical  
post-processing.

Quantum advantage can be approached in two steps: first, by dem-
onstrating the ability of existing devices to perform accurate computa-
tions at a scale that lies beyond brute-force classical simulation, and 
second by finding problems with associated quantum circuits that 
derive an advantage from these devices. Here we focus on taking the 

first step and do not aim to implement quantum circuits for problems 
with proven speed-ups.

We use a superconducting quantum processor with 127 qubits to 
run quantum circuits with up to 60 layers of two-qubit gates, a total of 
2,880 CNOT gates. General quantum circuits of this size lie beyond what 
is feasible with brute-force classical methods. We thus first focus on 
specific test cases of the circuits permitting exact classical verification 
of the measured expectation values. We then turn to circuit regimes 
and observables in which classical simulation becomes challenging 
and compare with results from state-of-the-art approximate classical 
methods.

Our benchmark circuit is the Trotterized time evolution of a 2D 
transverse-field Ising model, sharing the topology of the qubit proces-
sor (Fig. 1a). The Ising model appears extensively across several areas in 
physics and has found creative extensions in recent simulations explor-
ing quantum many-body phenomena, such as time crystals11,12, quan-
tum scars13 and Majorana edge modes14. As a test of utility of quantum 
computation, however, the time evolution of the 2D transverse-field 
Ising model is most relevant in the limit of large entanglement growth 
in which scalable classical approximations struggle.

In particular, we consider time dynamics of the Hamiltonian,

∑ ∑H J Z Z h X= − + , (1)
i j

i j
i

i
# , $
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as the validity of exponential extrapolation is no longer guaranteed  
(see Supplementary Information V and ref. 31). We restrict the circuit 
depth to five Trotter steps (15 CNOT layers) and judiciously choose 
observables that are exactly verifiable. Figure 3 shows the results as 
θh is swept between 0 and π/2 for three such observables of increasing 
weight. Figure 3a shows Mz as before, an average of weight-1 $Z % observa-
bles, whereas Fig. 3b,c show weight-10 and weight-17 observables. 
The latter operators are stabilizers of the Clifford circuit at θh = π/2, 
obtained by evolution of the initial stabilizers Z13 and Z58, respectively, 
of |0%⊗127 for five Trotter steps, ensuring non-vanishing expectation 
values in the strongly entangling regime of particular interest. Although 
the entire 127-qubit circuit is executed experimentally, light-cone and 
depth-reduced (LCDR) circuits enable brute-force classical simula-
tion of the magnetization and weight-10 operator at this depth (see 
Supplementary Information VII). Over the full extent of the θh sweep, 
the error-mitigated observables show good agreement with the exact 
evolution (see Fig. 3a,b). However, for the weight-17 operator, the light 
cone expands to 68 qubits, a scale beyond brute-force classical simula-
tion, so we turn to tensor network methods.

Tensor networks have been widely used to approximate and com-
press quantum state vectors that arise in the study of the low-energy 
eigenstates of and time evolution by local Hamiltonians2,32,33 and, more 
recently, have been successfully used to simulate low-depth noisy 
quantum circuits34–36. Simulation accuracy can be improved by increas-
ing the bond dimension χ, which constrains the amount of entangle-
ment of the represented quantum state, at a computational cost 
scaling polynomially with χ. As entanglement (bond dimension) of a 
generic state grows linearly (exponentially) with time evolution until 
it saturates the volume law, deep quantum circuits are inherently dif-
ficult for tensor networks37. We consider both quasi-1D matrix product 
states (MPS) and 2D isometric tensor network states (isoTNS)3 that 
have O χ( )3  and O χ( )7  scaling of time-evolution complexity, respectively. 
Details of both methods and their strengths are provided in Methods 

and Supplementary Information VI. Specifically for the case of the 
weight-17 operator shown in Fig. 3c, we find that an MPS simulation of 
the LCDR circuit at χ = 2,048 is sufficient to obtain the exact evolution 
(see Supplementary Information VIII). The larger causal cone of the 
weight-17 observable results in an experimental signal that is weaker 
compared with that of the weight-10 observable; nevertheless, mitiga-
tion still yields good agreement with the exact trace. This comparison 
suggests that the domain of experimental accuracy could extend 
beyond the scale of exact classical simulation.

We expect that these experiments will eventually extend to circuit 
volumes and observables in which such light-cone and depth reduc-
tions are no longer important. Therefore, we also study the perfor-
mance of MPS and isoTNS for the full 127-qubit circuit executed in Fig. 3, 
at respective bond dimensions of χ = 1,024 and χ = 12, which are primar-
ily limited by memory requirements. Figure 3 shows that the tensor 
network methods struggle with increasing θh, losing both accuracy and 
continuity near the verifiable Clifford point θh = π/2. This breakdown 
can be understood in terms of entanglement properties of the state. 
The stabilizer state produced by the circuit at θh = π/2 has an exactly flat 
bipartite entanglement spectrum, found from a Schmidt decomposi-
tion of a 1D ordering of the qubits. Thus, truncating states with small 
Schmidt weight—the basis of all tensor network algorithms—is not 
justified. However, as exact tensor network representations generi-
cally require bond dimension exponential in circuit depth, truncation 
is necessary for tractable numerical simulations.

Finally, in Fig. 4, we stretch our experiments to regimes in which the 
exact solution is not available with the classical methods considered 
here. The first example (Fig. 4a) is similar to Fig. 3c but with a further 
final layer of single-qubit Pauli rotations that interrupt the circuit-depth 
reduction that previously enabled exact verification for any θh (see Sup-
plementary Information VII). At the verifiable Clifford point θh = π/2, 
the mitigated results agree again with the ideal value, whereas the 
χ = 3,072 MPS simulation of the 68-qubit LCDR circuit markedly fails 
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Fig. 3 | Classically verifiable expectation values from 127-qubit, depth-15 
Clifford and non-Clifford circuits. Expectation value estimates for θh sweeps 
at a fixed depth of five Trotter steps for the circuit in Fig. 1a. The considered 
circuits are non-Clifford except at θh = 0, π/2. Light-cone and depth reductions 
of respective circuits enable exact classical simulation of the observables for all 
θh. For all three plotted quantities (panel titles), mitigated experimental results 
(blue) closely track the exact behaviour (grey). In all panels, error bars indicate 
68% confidence intervals obtained by means of percentile bootstrap. The 
weight-10 and weight-17 observables in b and c are stabilizers of the circuit at 
θh = π/2 with respective eigenvalues +1 and −1; all values in c have been negated 
for visual simplicity. The lower inset in a depicts variation of $Zq% at θh = 0.2 
across the device before and after mitigation and compares with exact results. 

Upper insets in all panels illustrate causal light cones, indicating in blue the 
final qubits measured (top) and the nominal set of initial qubits that can 
influence the state of the final qubits (bottom). Mz also depends on 126 other 
cones besides the example shown. Although in all panels exact results are 
obtained from simulations of only causal qubits, we include tensor network 
simulations of all 127 qubits (MPS, isoTNS) to help gauge the domain of  
validity for those techniques, as discussed in the main text. isoTNS results  
for the weight-17 operator in c are not accessible with current methods (see 
Supplementary Information VI). All experiments were carried out for G = 1, 1.2,  
1.6 and extrapolated as in Supplementary Information II.B. For each G, we 
generated 1,800–2,000 random circuit instances for a and b and 2,500–3,000 
instances for c.

Error correction is coming: But also:

Google AI, Nature 614, 676 (2023) Kim et al., Nature 618, 500 (2023)



Application: Lattice QFT simulation
Simple recipe: 
1. Discretize space 
2. Represent field at each node / link with qubits 
3. Prepare initial state 
4. Express time evolution with gates 
5. Simulate and measure 
→ Full dynamics simulation of quantum fields! 

Schwinger model (1+1D QED) demonstrated in 2016 
on a 4-bit trapped ion system
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Jordan et al. Science 336, 1130 (2012)
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Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
Esteban A. Martinez1*, Christine A. Muschik2,3*, Philipp Schindler1, Daniel Nigg1, Alexander Erhard1, Markus Heyl2,4, 
Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 

1Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria. 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 
Innsbruck, Austria. 3Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria. 4Physics Department, Technische Universität München, 85747 Garching, Germany.
* These authors contributed equally to this work.
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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Simple recipe is insufficient
In practice: 
• Long simulation 
→ need error correction 

• Requires many qubits 
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Energy range 
expressible by lattice: 

 

+ 
Full simulation of LHC 

scattering: 

1
Nl

< E <
1
l

100MeV < E < 7TeV

Number of lattice sites 
N3 ∼ 1014

Ideas to lower qubit requirement: 
• EFT: division of phase space (2102.05044) 
• Particle-based field representation (2012.00020)

https://arxiv.org/abs/2012.00020


Application: Quantum “neural network”
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Quantum advantage? 
Very active research ongoing



Early HEP adopters
• Wu et al. (JPhys G 2021)  

• Classification of LHC ttH&Hμμ events vs background 
• Terashi et al. (CSBS 2021) 

• Classification of LHC SUSY events 
• Blance and Spannowsky (JHEP 2020) 

• Classification of Z'→tt against continuum bkg. 
• Gianelle et al. (JHEP 2022) 

• b-jet charge identification 

Quantum GAN with parametric circuits: 
• Chang et al. (ACAT 2021) 

• Calorimeter simulation 
• Bravo-Prieto et al. (Quantum 2022) 

• Event generation
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samples. Shown in Fig. 6 is the average of the resulting 
AUC values and the standard deviations of the average. As 
expected, it is apparent from the BDT and DNN curves that 
the performance of these two algorithms improves rapidly 
with increasing N train

event
 and then flattens out. The BDT works 

well over the entire N train
event

 range while the DNN performance 
appears to improve faster at very small N train

event
 and exceed 

BDT at N train
event

 beyond ∼ 1000 . In the case of Nvar = 7 and 
N train
event

= 500,000 , the AUC values are 0.8729 ± 0.0003 for 
the DNN and 0.8696 ± 0.0006 for the BDT. When using all 
the 18 variables with 2,000,000 events for the training and 
testing each, the average AUC value from only five trials 
is 0.8772 ± 0.0004 ( 0.8750 ± 0.0004 ) for the DNN (BDT).

The performance of the QCL algorithm is character-
ized by the relatively flat AUC values regardless of N train

event
 . 

Increasing the Nvar appears to degrade the performance if 
the N train

event
 is fixed, and the same behavior is also seen for the 

DNN with N train
event

≤ 500 (not clearly visible for the BDT). 
Further studies show that the QCL performance of the flat 
AUC value and the degradation with increasing Nvar is 
related to the choice of the variables: the Nvar = 3 variables 
used have sufficient information for the QCL algorithm to 
discriminate the signal from background, and no positive 
impact is seen on the performance by adding more variables 
or more events. However, it is seen that the performance 
improves by adding them if different combinations of the 
variables are selected. The DNN algorithm overcomes the 
degradation and eventually improves the performance with 
increasing Nvar by using more data. Investigating how the 
QCL algorithm behaves with more data is a future subject. 
Nevertheless, for the Nvar and N train

event
 ( ≤ 10,000) ranges con-

sidered all the three algorithms have a comparable discrimi-
nating power with the AUC values of 0.80–0.85.

Quantum Computer and QASM Simulator

The VQC algorithm with Nvar = 3 has been tested on the 
20-qubit IBM Q Network quantum computers and the QASM 
simulator, as explained in “Quantum computer”. The present 
study focuses only on the classification accuracy with the 
real quantum computer. Figure 7 shows the values of the 
cost function in the training as a function of Niter for both 
the quantum computer and the simulator. For each of the 
quantum computer and the simulator, the training is repeated 
five times over the same set of events and their cost-function 
values are shown. When running the algorithm on the quan-
tum computer, the first three hardware qubits [0, 1, 2] are 
used [30]. The figure shows that both the quantum computer 
and the simulator have reached the minimum values in the 
cost function after iterating about 50 times. However, the cost 
values for the quantum computer are constantly higher and 
more fluctuating after reaching the minimum values.

The ROC curves for the quantum computer and the sim-
ulator obtained from the training and testing samples are 
shown in Fig. 8, averaged over the five trials of the training 
or testing. The AUC values for the testing samples are con-
siderably worse than those for the training ones because of 
the small sample sizes. This has been checked by increas-
ing the N train

event
 from 40 to 70, 100, 200, 500 and 1000 for 

the simulator (Table 2). As seen in the table, the over-
training largely disappears as the sample sizes increase. 
Figure 9 shows the ROC curves from the simulator for the 
two sample sizes of N train

event
= 40 and 1000, confirming that 

the over-training is not significant for the latter.

Fig. 5  ROC curves obtained from the test sample for the BDT, DNN 
and QCL algorithms with Nvar = 7 and N train

event
= 10,000 . The error 

bands correspond to the standard deviations of the values obtained by 
repeating the calculation over the training and test samples

Fig. 6  Average AUC values (calculated from the test samples) as 
a function of the training sample size for the BDT, DNN and QCL 
algorithms with Nvar = 3 (circles), 5 (squares) and 7 (triangles). For 
the BDT and DNN, the average AUC values for the training sample 
of 2,000,000 events and 18 variables are also shown with the plus 
markers. The error bars represent the standard deviations of the aver-
age AUC values. The BDT and DNN points are slightly shifted hori-
zontally from the nominal N train

event
 values to avoid overlapping

(a) (b)

Figure 5: Comparison of the averaged training history for 15 runs of the QVC models

trained with quantum gradient descent, QVC models trained using vanilla gradient descent

and the classical NN models. Figure (a) show models trained with 1500 samples and Figure

(b) shows models trained with 500 samples.
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Figure 6: (a) Output of a QVC model trained with quantum gradient descent and (b)

ROC curve for a QVC model trained with quantum gradient descent, a QVC model trained

with vanilla gradient descent and the classical NN.

6 Conclusions

One of the tasks with paramount importance for searches of new physics at collider ex-

periments is the design of methods to distinguish rare signal events from large Standard

Model backgrounds. In recent years increasing e↵ort was dedicated to developing novel

machine learning methods to help find correlations in high-dimensional parameter spaces.

– 13 –
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Figure 3. The ROC curves (as a benchmark in the plane of background rejection versus
signal ef!ciency) of the quantum variational classi!er method on the ibmq QasmSimu-
lator (blue), the classical SVM (yellow), and the BDT (green) for (a) the t̄tH analysis
and (b) the H → µ+µ− analysis. In each analysis, the classi!ers are constructed using
ten independent datasets, each consisting of 100 events for training and 100 events for
testing. All classi!ers are trained with the same 10 variables processed with the PCA
method. In this study, 10 qubits are employed on the quantum computer simulator.
To visualize the discrimination power of each algorithm, the testing events of the ten
datasets are combined to make the ROC curves. We observe that the quantum varia-
tional classi!er method on the ibmq QasmSimulator performs similarly to the classical
SVM and the BDT for both the t̄tH analysis and the H → µ+µ− analysis.
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Figure 5: Marginal samples distributions for each dimension x, y, z of the 3D correlated Gaussian distribution for the style-

qGAN model trained with 104
samples (top row), together with the corresponding two-dimensional sampling projections

(middle row) and the ratio to the reference underlying prior distribution (bottom row). The style-qGAN generator model learns

the correlations and provides acceptable samples when compared to the reference distribution. Note that we choose a grey

background for the plots at the bottom row to more clearly highlight a ratio of one between reference and generated samples,

indicated by white.

for Dlatent Ø 3 no further significant improvement is
seen. The same holds for increasing the number of
layers in the style-qGAN model. This suggests that
the number of latent dimensions introduced is a key
hyperparameter once the number of layers allows a
su�cient complexity. However, training success also
depends on the convergence of the GAN parameters
through optimization. This means that, in practice,
having more layers and parameters than the minimal
set might be a better choice.

Since the eigenvalues are known also exactly
through Eq. 9 we furthermore can compare the per-
formance of the style-qGAN with increased generation
sample size. We find that the style-qGAN with 3 la-
tent dimensions and 1 layer (shown here) generates
sets that reproduce the exact eigenvalues of the in-
put covariance matrix to better than . 6% for 10

3,
. 1.3% for 5 ◊ 10

3 and . 0.8% for 2 ◊ 10
4 samples.

This analysis demonstrates a key property of a func-
tioning GAN model – that the larger set of generated

samples more closely agrees with the reference input
distribution function. The observation that our style-
qGAN fulfils this property confirms its viability as
a functioning quantum implementation of the gener-
ative adversarial network idea for multi-dimensional
correlated data.

4 Generating LHC events
After the validation of the style-qGAN model pre-
sented in the previous section, let us consider a train-
ing dataset from HEP. One of the big challenges in-
volving Monte Carlo (MC) event generation for mod-
elling physics processes in HEP is the large number of
data points required in order to compare predictions
of physical observables to experimental data.
In this context, we have generated 10

5 MC events
for pp æ tt̄ production at LHC with

Ô
s = 13 TeV

with MadGraph (MG5 aMC [64, 65]) at leading order
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Although, theoretically, it is sufficient to take n1 = n = 2, several preliminary simulations
have shown that n1 = 2n = 4 gives better stability in the results. Therefore, for the following
simulations, PQC1 takes n1 = 4 but still builds a probability distribution over 22 = 4 images,
by only measuring n = 2 qubits among four. PQC1 is initialized with an equiprobable super-
position over the computational basis, {|0〉 , ..., |2n1 − 1〉} with n1 = 4. Furthermore, the initial
parameters for both PQC1 and PQC2 are sampled from a uniform distribution over [−δ, δ],
with δ = 10−1. The discriminator is implemented in PyTorch, using an input layer with 4
nodes, two hidden layer with 256, 128 nodes, respectively, and a single node output layer.
After the first two layers follows a Leaky ReLU function [32] with α = 0.2 and a sigmoid
function [33] is applied after the output layer. In addition, a gradient penalty [34] for real
images is added to help stability and convergence of the model, with the parameters λ = 7,
k = 0.01 and c = 1. The dual-PQC GAN is trained using the AMSGRAD optimizer with
initial learning rate of 10−4 for PQC1 and discriminator and 10−3 for PQC2.

(a) (b) (c)

(d) (e) (f)

Figure 4: Results of dual-PQC GAN simulations with n = 2, n1 = n2 = 4, dg,1 = 2 and
dg,2 = 6 (a, b, c) / dg,2 = 16 (d, e, f). The mean image amplitudes calculated by Eq.(6) (a,d),

the generator and the discriminator losses (b, e), and the progress in relative entropy for the
mean image (c,f) are illustrated.

Fig. 4 displays progress in the loss functions and relative entropy, as well as the average
of generated images at the end of the training, weighted with their probability, given by:

Imean =
∑2n−1

i=0 pi
g · Ii. (6)

Both cases of dg,2 = 6 and dg,2 = 16 exhibit convergence in mean energy distribution
towards the target, as well as convergence of generator and discriminator losses. Furthermore,
the relative entropy between real and generated mean images reaches below 10−4 as shown
on Fig. 4c and Fig. 4f. Note that after the convergence in loss function, the relative entropy
does not cease decreasing in case of dg,2 = 16, while it starts to oscillate with large amplitude
in case of dg,2 = 6, reflecting certain degree of instability in the simulation.
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Summary
• Computing and software evolves fast 
→ Investment in cutting-edge technologies pays off 

• Advanced computing in 2023: heterogeneous, accelerated 
• Driven by need: cannot handle HL-LHC by stacking commodity CPU 
• Also by benefits: novel techniques bring new opportunities 

• Reviewed some technologies; left out a lot more 
• Noisy quantum computers are available for use 
• Exciting outlook for error-corrected quantum computers 

• Also exciting to identify the use cases of noisy devices
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