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How is ML used in particle physics?

Main use so far is in collider physics

e Can generate billions of simulated events on a laptop

 Simulations accurate over 20 orders of magnitude!
* Unheard of in any other area of science

v Simulation pipeline:
| Perturbative QCD: 101°m - 101t m

Parton shower: 101 m — 1014 m
Hadronization/framentation 10-14m — 1012 m
tracker/ecal/hcal simulation 1012 m — 102 m




Most results heavily use these simulations
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Current areas of progress

1. Lattice QCD
* Normalizing flows, Monte Carlo sampling, Spectral reconstruction, ...

2. Simulation/unfolding
* Learn to reproduce simulations with a neural network
* Can speed up simulations by factors of 103 - 10°
* Can be used for unfolding: remove effects of simulation on data

3. Anomaly detection
e Search for deviations from background
* No signal hypothesis necessary (?)

4. Data representation
* Can ML provide a better way to categorize and understand data?
* e.g.optimal transport, graph networks, etc.

5. Classification
 Top tagging, W tagging, Q v G discrimination, new physics searches

6. Symbolic regression
e Large language models (chatGPT) ?



Anomaly detection




The Dream:

Anomaly detection

* ML sees something unusual in the data, new physics is found!

e dreamis an unsupervised method: do not need a signal hypothesis
* Way to find “unknown unknowns”

The main idea:

* Background is understood well enough by ML that statistical outliers are seen

Hajer et al:1807.10261

Heimel et al: 1808.08979
Farina et al: 1808.08992
Cerriet al: 1811.10276

Roy + Vijay: 1903.02032,
Atkinson et al: 2105.07988
Carron et al: 2106.10164
Ngairangbam et al: 2112.04958
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Autoencoders

Variational autoencoders: [Farina etal: 1808.08992]

* Compress the background/data to a low-dimensional latent space
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* Uncompress back to data space.
* Poorly reconstructed events are anomalies

Fraser, MDS, et al: 2110.06948

* Can look for anomalies directly in low-dimensional latent space

Top jet

W jet

Number of

Metric |~ 10ids Method AUC eg(eg =0.1) | AUC eg(er =0.1)
Avg 0.81 0.33 0.62 0.02
1 Medoid 0.83 0.28 0.63 0.02
Wass(1) | 3 (elbow) Medoids (min) | 0.85 0.43 0.67 0.04
5 Medoids (min) | 0.87 0.54 0.60 0.05
T Medoids (min) | 0.87 0.54 0.61 0.05
Wass(5) | 4 (elbow) Medoids (min) | 0.67 0.22 0.41 0.04
\MAE 1 Medoid 0.82 0.40 0.71 0.07
o 3 (elbow) Medoids (min) | 0.82 0.49 0.61 0.08

* Use k medoids or Wasserstein optimal transport metric
e Use event-to-ensemble distance for anomaly score Wass
* Take home messages:

e Performance depends on metric and sample

e Cannot optimize in signal-independent manner

i,j

4P = (minfz fij(cﬁ)p)up



ABCDisCo: ML the ABCD method

* Standard experimental sideband technique
NBN¢
Np
* Requires two features f and g to be uncorrelated
* E.g. f =mass and g = rapidity
Distance Correlation (DisCo): alternative to adversarial networks
* Decorrelates observables, easy to train

* Estimate background in region A via Ny =

Kasieczka and Shih [arXiv: 2001.05310] Kasieczka, Nachman, MDS, Shih [arXiv: 2007.14400]
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Challenges for Anomaly Detection

Background regions are signal dependent
* e.g.if looking for a dijet resonance, need a dijet background
* No such thing as a signal-independent background

Looking under the lampost
*  We only know how to look for resonances/new particles
* Different signals are too varied to be pooled together

Very sensitive to metric for what is anomalous
* Tails of backgrounds are unique in their own way

Supervised classifiers always do better

Signal Region, Shifted Dataset
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Classification




Classification: top tagging

e.g. top tagging

Jet substructure approach (2008-2017):

Think about physics
* Deconstruct jet
* Look for W within top jet
* Look at helcity angle
* Hopkins Top Tagger (2008)
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e.g. top tagging

Classification: top tagging

Jet substructure approach (2008-2017):

Think about physics
* Deconstruct jet

* Look for W within top jet

* Look at helcity angle

* Hopkins Top Tagger (2008)
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Machine learning methods are much better
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traditional collider physics
(1980-2017)

ML requires less “thinking”
Provdies less physical insight
Better performance



What subfield will ML make obsolete next?

Symbolic Numerical
problems

hep-ex

Most ML in
high-energy

Most hep-ph and hep-th papers are symbolic

* Qualitative understanding of some simplified model
* Approximate but exact solutions to some equation
* Analytic computations in some system

So far, most ML in physics is highly numerical
e Collider physics data is millions of numbers
e Approximate answers are ok



What subfield will ML make obsolete next?

Symbolic Numerical
problems

hep-ex

Most ML in
high-energy

Most hep-ph and hep-th papers are symbolic

* Qualitative understanding of some simplified model
* Approximate but exact solutions to some equation
* Analytic computations in some system

So far, most ML in physics is highly numerical
e Collider physics data is millions of numbers
e Approximate answers are ok

Symbolic ML methods will be essential for the future of High Energy Physics
 The world is changing because of symbolic large langauge models



Symbolic regression




1. Simplifying polylogarithms

Given some po]y]ogarithmic expression: Dersy, Schwartz, Zhang arXiv:2206.04115)

flz)=9 (—Lig(x) — Li (_i%) ~ Lis (_i if@))

+4 (—Li3(:c) + Liy (xiﬂ) + Lig(z + 1) — Lis(—2) In(z + 1))

4 (Liz(x +1)In(z+1) + é n(z + 1) + % In(—z) In(z + 1))

1. What is its simplest form?
2. Does it simplify to zero?
3. What identities do we apply in what order to simplify it?

Polylogarithmic expression RL Simplified polylogarithmic expression
s (1 1 2 .
Two approaches Liy(3) + 3 In"(—2) Lis(z)
1. Reinforcement learning classical
2. Transformer networks algorithm Transformer
Symbol Simplified Symbol
-0-))®+[z®4] classical 1-2)®z

algorithm



Dersy, Schwartz, Zhang arXiv:2206.04115)

Example use case

1. Loop calculation gives some function of GPLs with complex arguments

A e
G(0,0,1,z) + G <0,0,—‘/§7’,x> +G (0,0, +‘/§’,x>]

fl)=4G+9 2 9

+4 [—G(—l, -1,-1,z) +G(-1,0,-1,2) + G(0,-1,-1,z) + G(0,0,1,z) — G (0, 0,1, " i 1)]

2. Express in terms of classical polylogs
+4 (—Lig(:z:) + Li (ﬁ) + Lig(z + 1) — Lis(—2) In(z + 1))
4 (Liz(x FD)In(@+ 1)+ (@ +1) + 5 In(~2) (e + 1))
3. Compute the symbol and simplify
Slfx)] =9(="+z+1)®@z@z+13(1-2)@zQz+4(z+1)QzQ=z

4. Integate the symbol with a transformer network / highly non-trivial

powerful dedicated
f(z) = —Lig(z®) — Liz(z”) + 4¢3 Vv neural network



2. Simplifying Spinor-helicity amplitudes

1. Compute 5-point MHV amplitude with Feynman diagrams: 390 terms
2. Choose some smart reference vector to reduce to 79 terms
(smarter choice can reduce to 17)

(12)%(15)%(24)(34) [12] [14] [15] [23] [25] + (12)%(15)(23)(34)(45)[12] [15] [23] [25] [34] + ---77 terms
(15)%(23)(34)2(45)2[12]* [15] [23] [45]

l promising
pairs

———

> transformer
simplified form
of 2 terms

3. Feed to network

contrastive

learning

after 55
simplification steps

(12)°
(15)(23)(34)(45)

4. Output when simplification completes



3. S-matrix bootstrap

What is the S-matrix bootstrap?
e Use analyticity, unitarity, crossing symmetries, etc. to completly fix S
e Stalled in 1960s: math too hard

* Recent revitalization: new insights from toy models, susy, numerical methods, etc.
Penedones et al 1708.06756

. . ) Fitzpatrick et al 2207.12448
Example ML appllcatlon: Dersy, MDS, Zhiboedov, to appear

For a given cross section o ~ |F|?2
* Does there always exist a phase ¢ so that F = Bei® ?
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Open questions:
A. How do we determine ¢ from B7?
B. Can there be many phases ¢4, ¢,, ... for the same B2?



A. Can we find ¢(z) given B(z)? ... Yes!

Parametrize ¢(z) as a neural network
N\
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* Loss function is unitarity condition
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The future




Future of Al

OpenAl GPT-3 .

s

Google : PaLM (2022)
540 billion parameters

QUES‘“ON ANSWERING LOGICAL INFERENCE CHAINS
SEMANTIC PARSING COMMON-SENSE REASONING
PROVERBS PATTERN RECOGNITION

ARITHMETIC » TRANSLATION
CODE COMPLETION DIALOGUE
GENERAL KNOWLEDGE JOKE EXPLANATIONS

READING COMPREHENSION pHYS|CS QA

SUMMARIZATION LANGUAGE UNDERSTANDING

3rd generation model (2020)
175 billion parameters

Human brain
Cat brain

0.760 billion neurons

80 billion neurons .
10 trillion synapses

150 trillion synapses

170 trillion parameters!

2023 ... 2040... 21007 ...3000...7



Synapses/parameters

Future of Al

Should artificial intelligence be interpretable to

P humans? MDS, Nature reviews physics (2022)
100 .. '.,.".GPT_Z‘ ....... « ELMo (94 million parameters, 2018)
/] « GPT2 (1.5 billion parameters, 2019)
101 GPT3g0PalM . GPT3 (175 billion parameters, 2020)
- BgTTZ i - PALM (540 billion parameters, 2022)
S ElMo| « GPT4 (110 trillion parmaeters, 2023)

-10 -5 0 5 10 N
Years (2022) Al grows by factor of ~10/year
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Does Al look like biological intelligence?

Exam

GPT-4

SAT Math
Graduate Record Examination (GRE) Quantitative
Graduate Record Examination (GRE) Verbal
AP Environmental Science
AP Macroeconomics
AP Microeconomics

AP Physics 2

700 / 800 (~89th)
163 /170 (~80th)

169 /170 (~99th)
5 (91st - 100th)
5 (84th - 100th)
5 (82nd - 100th)
4 (66th - 84th)

GPT4 can do freshman level college
physics very well

In ~ 1 year will do it perfectly

In ~ 3 years it will have mastered college



MA

Solution...

Write me a good sophmore level physics problem about vietham

Problem: Cable Car in Ba Na Hills

The Ba Na Hills cable car near Da Nang, Vietnam, holds the world record for the longest non-
stop single track cable car at 5,801 meters in length. It also boasts a staggering height
difference between its departure and arrival station, offering passengers an impressive view

of the surrounding scenery.

Imagine a physics experiment conducted aboard this cable car. A student suspends a
simple pendulum of length 0.5 meters from the ceiling of the cable car. The pendulum
consists of a small weight at the end of a lightweight, inextensible string. As the cable car
ascends the hill with a constant upward acceleration of a = 0.2 m/sZ, the student notices

the pendulum no longer hangs vertically but makes an angle € with the vertical line.

1. Determine the angle @ that the pendulum makes with the vertical due to the acceleration of

the cable car.

Hint: Consider the effective gravitational acceleration in the frame of reference of the

accelerating cable car.

Thus, due to the acceleration of the cable car, the pendulum makes an angle of

approximately 1.17° with the vertical.
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Can the improvements continue?
« Already use all available training data (the internet)
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In ~ 3 years it will have mastered college



Does Al look like biological intelligence?

Exam

GPT-4

SAT Math
Graduate Record Examination (GRE) Quantitative
Graduate Record Examination (GRE) Verbal
AP Environmental Science
AP Macroeconomics
AP Microeconomics

AP Physics 2

700 / 800 (~89th)
163 /170 (~80th)

169 /170 (~99th)
5 (91st - 100th)
5 (84th - 100th)
5 (82nd - 100th)
4 (66th - 84th)

Can the improvements continue?
« Already use all available training data (the internet)

GPT4 can do freshman level college
physics very well

In ~ 1 year will do it perfectly

In ~ 3 years it will have mastered college

Yes! It would be foolish to say this is the endpoint
* ML can learn just like we do

Data augmentation
Create and solve toy problems
Fewer sociological pressures than human beings have



Conclusions

Machine learning is having a huge impact on high energy physics
« QCD

« Anomaly detection

» Detector simulation/unfolding

« Jet substructure/classification

Future of ML in high energy will likely be more symbolic
« Begin with hybrid numerical/symbolic problems
» (polylogarinms, spinor helicities, Feynman diagrams)
« Eventually exploit large language models to understand physical systems like we do

ML provides hope at finally solving
problems too dificult for human beings




