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How is ML used in particle physics?
Main use so far is in collider physics

Simulation pipeline:
• Perturbative QCD:  10-19m - 10-16 m
• Parton shower: 10-16 m – 10-14 m
• Hadronization/framentation 10-14m – 10-12 m
• tracker/ecal/hcal simulation 10-12 m – 102 m

• Can generate billions of simulated events on a laptop
• Simulations accurate over 20 orders of magnitude!
• Unheard of in any other area of science



Slide from R. Winteralder

Most results heavily use these simulations



Current areas of progress
1. Lattice QCD

• Normalizing flows, Monte Carlo sampling, Spectral reconstruction, …

2. Simulation/unfolding 
• Learn to reproduce simulations with a neural network
• Can speed up simulations by factors of 103 - 105

• Can be used for unfolding: remove effects of simulation on data

3. Anomaly detection
• Search for deviations from background 
• No signal hypothesis necessary (?)

4. Data representation
• Can ML provide a better way to categorize and understand data?
• e.g. optimal transport, graph networks, etc.

5. Classification
• Top tagging, W tagging, Q v G discrimination, new physics searches

6. Symbolic regression
• Large language models (chatGPT) ?



Anomaly detection



Anomaly detection
The Dream: 

• ML sees something unusual in the data, new physics is found!
• dream is an unsupervised method: do not need a signal hypothesis
• Way to find “unknown unknowns”

The main idea:
• Background is understood well enough by ML that statistical outliers are seen

Easy: outliers Hard: overdensities
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Collins et al: 1805.02664
D’Anglo and Wulzer: 1806.02350
Collins et al: 1902.02634
D’Anglo et al: 1912.12155
Nachman & Shih: 2001.04990
Stein et al: 2012.11638
Carron et al: 2106.10164
Hallin et al: 2109.00546
…

Hajer et al:1807.10261
Heimel et al: 1808.08979
Farina et al: 1808.08992
Cerri et al: 1811.10276
Roy + Vijay: 1903.02032, 
Atkinson et al: 2105.07988
Carron et al: 2106.10164
Ngairangbam et al: 2112.04958
…



Variational autoencoders:
• Compress the background/data to a low-dimensional latent space

• Uncompress back to data space.
• Poorly reconstructed events are anomalies

Autoencoders
[Farina et al: 1808.08992] 

• Can look for anomalies directly in low-dimensional latent space

• Use k medoids or Wasserstein optimal transport metric
• Use event-to-ensemble distance for anomaly score
• Take home messages:

• Performance depends on metric and sample
• Cannot optimize in signal-independent manner

Fraser, MDS, et al: 2110.06948 



ABCDisCo: ML the ABCD method

Kasieczka, Nachman, MDS, Shih [arXiv: 2007.14400]

ABCD method:
• Standard experimental sideband technique
• Estimate background in region A via 𝑁! =

"!""
"#

• Requires two features 𝑓 and 𝑔 to be uncorrelated
• E.g. 𝑓 = mass and 𝑔 = rapidity

Distance Correlation (DisCo): alternative to adversarial networks
• Decorrelates observables, easy to train

• Single DisCo

𝑓 is fixed (e.g. mass) 𝑔 is learned

• Double DisCo

𝑓 and 𝑔 are learned

Top tagging RPV squark search

Kasieczka and Shih [arXiv: 2001.05310]



• Background regions are signal dependent
• e.g. if looking for a dijet resonance, need a dijet background
• No such thing as a signal-independent background

• Looking under the lampost
• We only know how to look for resonances/new particles
• Different signals are too varied to be pooled together

• Very sensitive to metric for what is anomalous
• Tails of backgrounds are unique in their own way

• Supervised classifiers always do better

Challenges for Anomaly Detection

[Hallin et al. 2109.00546]



Classification



Classification: top tagging

Jet substructure approach (2008-2017):
• Think about physics
• Deconstruct jet
• Look for W within top jet
• Look at helcity angle
• Hopkins Top Tagger (2008)

best jet subsubstructure algorihm (2014)
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e.g. top tagging

fig from 2103.12226



Jet substructure approach (2008-2017):
• Think about physics
• Deconstruct jet
• Look for W within top jet
• Look at helcity angle
• Hopkins Top Tagger (2008)

best jet subsubstructure algorihm (2014)

• ML requires less “thinking”
• Provdies less physical insight
• Better performance

traditional collider physics
(1980-2017)
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e.g. top tagging

Machine learning methods are much better

fig from 2103.12226

Classification: top tagging



Most ML in 
high-energy

hep-ph

hep-th

Numerical 
problems

What subfield will ML make obsolete next?

Most hep-ph and hep-th papers are symbolic
• Qualitative understanding of some simplified model
• Approximate but exact solutions to some equation
• Analytic computations in some system 

hep-ex

Symbolic 
problems

So far, most ML in physics is highly numerical
• Collider physics data is millions of numbers
• Approximate answers are ok
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What subfield will ML make obsolete next?

Symbolic ML methods will be essential for the future of High Energy Physics
• The world is changing because of symbolic large langauge models

future

Symbolic 
problems

So far, most ML in physics is highly numerical
• Collider physics data is millions of numbers
• Approximate answers are ok

Most hep-ph and hep-th papers are symbolic
• Qualitative understanding of some simplified model
• Approximate but exact solutions to some equation
• Analytic computations in some system 
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Symbolic regression



Given some polylogarithmic expression:

1. What is its simplest form?
2. Does it simplify to zero? 
3. What identities do we apply in what order to simplify it?

Two approaches
1. Reinforcement learning
2. Transformer networks

RL

Dersy, Schwartz, Zhang arXiv:2206.04115)

classical 
algorithm

classical 
algorithm

1. Simplifying polylogarithms



Example use case
1. Loop calculation gives some function of GPLs with complex arguments

2. Express in terms of classical polylogs

3. Compute the symbol and simplify

4. Integate the symbol with a transformer network

✓

Dersy, Schwartz, Zhang arXiv:2206.04115)

highly non-trivial
powerful dedicated 
neural network



1. Compute 5-point MHV amplitude with Feynman diagrams: 390 terms
2. Choose some smart reference vector to reduce to 79 terms 

(smarter choice can reduce to 17)

3. Feed to network

2. Simplifying Spinor-helicity amplitudes

contrastive
learning

transformer

simplified form 
of 2 terms

after 55 
simplification steps

4. Output when simplification completes

promising
pairs

[Cheung, Dersy, MDS, in perparation]



3. S-matrix bootstrap

What is the S-matrix bootstrap?
• Use analyticity, unitarity, crossing symmetries, etc. to completly fix S
• Stalled in 1960s: math too hard
• Recent revitalization: new insights from toy models, susy, numerical methods, etc.

Example ML application:
For a given cross section σ～|F|2

• Does there always exist a phase φ so that F = Beiφ ?

φ

B

φ

B

Open questions:
A. How do we determine φ from B?
B. Can there be many phases φ1, φ2, ... for the same B?

s=8m2 s=4.5m2

Dersy, MDS, Zhiboedov, to appear

Penedones et al 1708.06756 
Fitzpatrick et al 2207.12448 



A. Can we find φ(z) given B(z)?  ... Yes!

φ(z)

B(z)

s=8m2

sinμ = 1.6

S-matrix bootstrap results

φ(z)

B(z)

s=4.5m2

sinμ=0.88

φ from B using ML

• Parametrize φ(z) as a neural network • Loss function is unitarity condition 

excellent
agreement
with known
results



The future



:  PaLM (2022)

80 billion neurons
150 trillion synapses

540 billion parameters

• 3rd generation model (2020)
• 175 billion parameters

170 trillion parameters!

Human brain

4

2023 ... 2040... 2100? ...3000...?

0.760 billion neurons
10 trillion synapses

Cat brain

Future of AI



Future of AI

• ELMo (94 million parameters, 2018)
• GPT2 (1.5 billion parameters, 2019)
• GPT3 (175 billion parameters, 2020)
• PALM (540 billion parameters, 2022)
• GPT4 (110 trillion parmaeters, 2023)

AI grows by factor of ~10/year

MDS, Nature reviews physics (2022)

GPT-4

(2022)
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Homo sapiens 
(150 trillion synapes)

Homo erectus 
(70 trillion synapes)

Mouse
(900 billion synapes)

diverged 
100 million years ago

GPT-4

Biological intelligence grows by a 
factor of 2 in 106 years

• Both AI and biological 
intelligence grow exponentially

• Factor of 106
difference in exponent (!!)

Future of AI



Does AI look like biological intelligence?

• GPT4 can do freshman level college 
physics very well

• In ~ 1 year will do it perfectly
• In ~ 3 years it will have mastered college



Solution...



Does AI look like biological intelligence?

Can the improvements continue?
• Already use all available training data (the internet)

• GPT4 can do freshman level college 
physics very well

• In ~ 1 year will do it perfectly
• In ~ 3 years it will have mastered college



Does AI look like biological intelligence?

Can the improvements continue?
• Already use all available training data (the internet)

• GPT4 can do freshman level college 
physics very well

• In ~ 1 year will do it perfectly
• In ~ 3 years it will have mastered college

• ML can learn just like we do
• Data augmentation
• Create and solve toy problems
• Fewer sociological pressures than human beings have

Yes! • It would be foolish to say this is the endpoint



Conclusions
Machine learning is having a huge impact on high energy physics
• QCD
• Anomaly detection
• Detector simulation/unfolding
• Jet substructure/classification

Future of ML in high energy will likely be more symbolic
• Begin with hybrid numerical/symbolic problems 

• (polylogarihms, spinor helicities, Feynman diagrams)
• Eventually exploit large language models to understand physical systems like we do

The future is bright!

ML provides hope at finally solving
problems too dificult for human beings


