

Australian Government Australian Research Council

ARC Centre of Excellence for Gravitational Wave Discovery Ground based interferometers: The Next Decades David McClelland

Director, Centre for Gravitational Astrophysics

The Australian National University

https://cga.anu.edu.au

Acknowledgement Bram Slagmolen; OzGrav; LIGO Scientific Collaboration

MELBOURNE

GW150914 was the most powerful astrophysics event observed to that time

Gravitational waves, high energy physics and dark matter

First 3 observing runs with the current GW network

LIGO, Virgo, Kagra, GEO

С	bserving Run 4 https://gracedb.ligo.org/superevents/public/O4/?page=2&showall=0						27 late		
	S230806ak	BBH (>99%)	Yes	Aug. 6, 2023 20:40:41 UTC	GCN Circular Query Notices VOE		1 per 10.711 years	May to early	0
	S230805x	BBH (>99%)	Yes	Aug. 5, 2023 03:42:49 UTC	GCN Circular Query Notices VOE		1 per 3.4497 years	, August 2023	t
	S230802aq	BBH (90%), NSBH (6%), Terrestrial (3%)	Yes	Aug. 2, 2023 11:33:59 UTC	GCN Circular Query Notices VOE	and the second sec	1 per 1.4226 years		
	S230731an	BBH (81%), NSBH (18%)	Yes	July 31, 2023 21:53:07 UTC	GCN Circular Query Notices VOE		1 per 100.04 years		
Gravitational Wave Events	Gravitational Wave Events LIGO/Virgo/KAGRA GCN alerts Designed for iPhone. Not verified for macOS		S.	July 29, 2023 08:23:17 UTC	GCN Circular Query Notices VOE		1 per 9.3389 years		
	S230726a	BBH (>99%)	Yes	July 26, 2023 00:29:40 UTC	GCN Circular Query Notices VOE	a construction of the second sec	1 per 8.2692e+05 years		
5	S230723ac	BBH (87%), Terrestrial (13%)	Yes	July 23, 2023 10:18:34 UTC	GCN Circular Query Notices VOE		1.6821 per year	-	

Standard Detector Layout and noise sources

Pinup for precision measurement and engineering!

Effectively we have observed the separation between the centres of mass of 40kg objects (10kg reduced mas) oscillate from 30Hz up to 240Hz with a peak amplitude of ~ 2x10⁻¹⁸ m!

DzGrav

Ultimately – Quantum Mechanics! $\Delta x \Delta p \ge \hbar / 2$

For the first time humans MAY see human-sized objects behave quantum mechanically! Science **372**, 1333-1336 (2021).

Grav

1980s: GW RESERCHERS LAUNCHED THE FIELD NOW KNOWN BROADLY AS QUANTUM INFORMATION -> WHY SUPPORTING FUNDAMENTAL RESEARCH IS CRUCIAL

O4 - LIGO-Virgo-KAGRA

- The current O4 observing run covers all long baseline observatories (since 24 May 2023)
 - LIGO (H1/L1)
 - KAGRA
 - joined from the start of O4 for 4 weeks, after which it continued more commissioning work to improve performance
 - Virgo
 - had to delay joining the observing run due to instrument challenges earlier this year; now up

INIAGES NOT PUBLICALLY ACCESSIBLE

The Next Decade

Improving the performance 10-fold over current target performance.

Few generations since the initial construction and operation of the ground based interferometric gravitational wave detectors

- Advanced LIGO/Advanced Virgo
- A+ LIGO / Virgo+ / LIGO-India
- A# / Virgo_nEXT

Currently we are generation 2 using some technologies predicted/planned for 2.5.

Third generation observatories

- New facilities
- New locations
- Incorporating lessons learned from current observatories

OzGrav

Kuns & Slagmolen

Next Generation (3G) Ground-based Observatories

Able to see astrophysical gravitational wave events out to almost the edge of the observable Universe.

- Aim to see almost all BNS mergers
- To register most of 30+30M_{sol} mass black-hole mergers
- Third generation observatories

12

• 10x better performance across the whole frequency band

Kuns 2020 (<u>https://dcc.cosmicexplorer.org/CE-</u><u>T2000017</u>), and Srivastava et al, "Science-driven tunable design of cosmic explorer detectors", The Astrophysical Journal, 931(1):22, 2022, <u>https://doi.org/10.3847/1538-4357/ac5f04</u>

Probing the Early Universe

Next Generation Observatories mid to late 2030s

- Nominal configuration comparable to current detectors
 - Dual recycled Michelson Interferometer with arm cavities
 - Larger and heavier Test Masses in the arm cavities
- Cosmic Explorer
 - US based concept
- Einstein Telescope
 - European based proposal
- Bridging concepts and proposals
 - LIGO Voyager
 - NEMO

 Next-generation US-led gravitational wave observatory project

40 km and 20 km L-shaped surface observatories

- 10x better sensitivity compared to Advanced LIGO+
- Estimated operating in the mid-2030s
 - Initially scaled up A+ technology & enhancements
 - Flexible facilities allow building on R&D breakthroughs
- CE project submission to NSF's Next Generation Gravitational Wave Subcommittee
 - committee charged with to recommend on next-generation ground-based gravitationalwave science in the US

Cosmic Explorer

Optimize science output while minimizing risk and complexity

Arm length

- 40 km detector with deep broadband sensitivity, from Hz
 kHz (limited by free spectral range of 3.7 kHz)
- 20 km detector trades off sub-kHz sensitivity for better high-frequency (1-3 kHz) performance, neutron star postmergers
- L-shape to reduce vacuum system cost (already 40% of cost); Long arms advantageous where surface feasible (North America, Australia?)

Number of detectors

 Two widely separated CEs advantageous for source localization, polarization Srivastava et al, The Astrophysical Journal, 931(1):22, 2022, <u>https://doi.org/10.3847/1538-4357/ac5f04</u>

Einstein Telescope

- European based next generation gravitational wave observatory.
- Currently, Equilateral triangle
- Arm length 10 km
- 200-300m underground
- 3 'detectors': Each detector consist of a lowfrequency and high-frequency interferometer.
- Sense both polarisations, sensitive to low frequencies down to a few Hz

Promised major investments by Italy and The Netherlands depending on site location

https://www.et-gw.eu/index.php/etimages

NEMO – Neutron start Extreme Matter Observatory (NEMO)

K. Ackley et al (OzGrav), "Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network", PASA**37**, 45006 (2020).

- Detector looking at single events
- Increased sensitivity at kHz places significant constraints on NS Equation of State
- Trade off performance at lower frequencies
- Average number of post merger events detected with with NEMO increased to 1 – a few per year
- Potential to measure phase transitions in hot remnants : deconfined quarks, other exotica

Optimum Global 3G Network

