6 lessons in planet formation from observations and models of protoplanetary discs **Christophe Pinte**

PDS 70 b

MONASH University

HD 163296 b

Last Update: August 10, 2023

5,483

Cumulative Detections Per Year

PLANETARY SYSTEMS

4,220

CANDIDATES

9,770

Nearly every star has planets

Large diversity in the architectures of planetary systems

Last Update: August 10, 2023

5,483

Cumulative Detections Per Year

PLANETARY SYSTEMS

4,220

CANDIDATES

9,770

Nearly every star has planets

Large diversity in the architectures of planetary systems

How do they form?

From clouds to envelopes, to disks, to planets

- Timescale for gas dispersal and planet formation?

- Where are the planets forming ?

- Relative evolution of dust and gas ?

From clouds to envelopes, to disks, to planets

Gas & Dust evolution

Inner disk clearing
~ 2 Myr

• Gas & dust evolution strongly coupled

Fedele et al. 2009

Accreting stars vs IRAC excess [%]

What is new in the last 10 years? the Atacama Large Millimetre/Submillimetre Array (ALMA)

What makes the rings ?

HL Tau (ALMA 2015)

LOTS of speculation

- Magnetic fields?
- Snow/ice lines?
- Secular evolution ?
- dead-zone + thermal waves ?
- Planets?

What HL Tau reminds us of

What is new ? Extreme adaptive optics systems (e.g. VLT/SPHERE, GPI)

HR8799 b,c,d,e (Marois+ 2008)

2009-08-01

20 au

β Pictoris b (Lagrange+ 2008)

5 au

What is new ? Extreme adaptive optics systems (e.g. VLT/SPHERE, GPI)

HR8799 b,c,d,e (Marois+ 2008)

2009-08-01

20 au

β Pictoris b (Lagrange+ 2008)

5 au

1. Imaging young planets is tricky

Detecting embedded planets is hard

Transit and radial velocities cannot be used to find planets around young stars

HST: HH 30 (Burrows et al 1995)

Detecting embedded planets is hard

- Transit and radial velocities cannot be used to find planets around young stars
- Direct imaging limited by disc + distance

cannot be oung stars c + distance

HST: HH 30 (Burrows et al 1995)

Protoplanet candidates have been hard to confirm

HD 100546 b

Quanz et al 2013, 2015, but see Rameau et al 2017, Folette 2017

MWC758 Observation (L'-band ADI) Model (L'-band ADI) S1b 0.1" S1b 0.6 0.6 0.4 0.4 eparation (") ⁰⁰⁰ ⁰⁰⁰ ⁰⁰⁰ 0.2 <mark>- S2</mark> S2 0.0 -0.2 S -0.4 -0.4 **S**3 **S**3 -0.6 -0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Separation (") Separation (") Reggiani et al 2018, model by Calcino et al 2020

Elias 2-24

HD169142

Reggiani et al 2014, Biller et al 2014, Phol et al 2017 Gratton et al 2019, Hammond et al, 2023

Currie et al 2022, Zhou et al 2022 But see also Jorquera et al 2022

A remarkable exception : PDS 70 b and c

Keppler et al. 2018 Muller et al 2018

- 1.4 to 3.7 R_{Jup}

- Accretion rate ~ 10⁻⁸ Msun/yr
- comparable with stellar accretion rate

Circumplanetary discs in PDS 70

Isella et al 2019 Benisty et al 2021

About 100 disks have been imaged

but we hardly found any protoplanets ...

2. Structures (and planets?) are everywhere

Extreme AO reveals stunning images of disks

Evidence of embedded planets or companions?

- gaps and rings
- inner cavities
- spirals
- shadows

Maybe ...

It also means planet formation is messy

Broad Shadows

Narrow Shadows

Back Side

Ambient Material

М

Κ

G/F

Are (some of) these structures caused by planets ?

AA Tau

-

DoAr44

HD142527

0

 \bigcirc

ALMA continuum surveys

Are (some of) these structures caused by planets ?

AA Tau

-

0

ALMA continuum surveys

3. Disc kinematics: some structures are caused by planets

Discs have a layered structure

Three layers:

▶ Hot atomic layer (PDR)

- Warm molecular layer → probed by ALMA in lines
- Cold icy mid plane → dust pebbles probed by ALMA in continuum

> max resolution spectral of ~ 25m/s $\lambda/\Delta\lambda \approx 10^7$

full spectral resolution + full spatial resolution remains impossible

can reach rms of 5K at 0.1", 50m/s in ~ 10h

max resolution spectral of ~ 25m/s $\lambda/\Delta\lambda \approx 10^7$

full spectral resolution + full spatial resolution remains impossible

$$v_{\phi, \mathrm{K}}(r) = \sqrt{\frac{GM_*}{r}} \approx 3.0 \sqrt{\frac{M_*}{M_{\odot}}} \sqrt{\frac{100\mathrm{au}}{r}} \mathrm{km \, s^{-1}}$$

max resolution spectral of ~ 25m/s $\lambda/\Delta\lambda \approx 10^7$

full spectral resolution + full spatial resolution remains impossible

$$v_{\phi, \mathrm{K}}(r) = \sqrt{\frac{GM_*}{r}} \approx 3.0 \sqrt{\frac{M_*}{M_{\odot}}} \sqrt{\frac{100\mathrm{au}}{r}} \mathrm{km \, s^{-1}}$$

$$\Delta v = \sqrt{\frac{2k_{\rm B}T_{\rm gas}}{m_{\rm mol}}} + \delta v_{\rm turb}^2 \approx \sqrt{(120\,{\rm m\,s^{-1}})^2}$$

 $+ \delta v_{\rm turb}^2$

max resolution spectral of ~ 25m/s $\lambda/\Delta\lambda \approx 10^7$

full spectral resolution + full spatial resolution remains impossible

$$v_{\phi, \mathrm{K}}(r) = \sqrt{\frac{GM_*}{r}} \approx 3.0 \sqrt{\frac{M_*}{M_\odot}} \sqrt{\frac{100\mathrm{au}}{r}} \mathrm{km\,s}$$

$$\Delta v = \sqrt{\frac{2k_{\rm B}T_{\rm gas}}{m_{\rm mol}}} + \delta v_{\rm turb}^2 \approx \sqrt{(120\,{\rm m\,s^{-1}})^2}$$

max resolution spectral of ~ 25m/s $\lambda/\Delta\lambda \approx 10^7$

full spectral resolution + full spatial resolution remains impossible

$$v_{\phi, \mathrm{K}}(r) = \sqrt{\frac{GM_*}{r}} \approx 3.0 \sqrt{\frac{M_*}{M_\odot}} \sqrt{\frac{100\mathrm{au}}{r}} \mathrm{km\,s}$$

$$\Delta v = \sqrt{\frac{2k_{\rm B}T_{\rm gas}}{m_{\rm mol}}} + \delta v_{\rm turb}^2 \approx \sqrt{(120\,{\rm m\,s^{-1}})^2}$$

Data from Andrews+2018, Huang+2018, Isella+2018

1000au Gaseous disks significantly larger than mm continuum disks

Data from Öberg+2021, Czekala+2021, Law+2021, Teague+2021

1000au It is possible to extract a velocity field for the whole disk

Data from Öberg+2021, Czekala+2021, Law+2021, Teague+2021

1000au Channel maps trace isovelocity contours

Data from Öberg+2021, Czekala+2021, Law+2021, Teague+2021

v = 0.06 km/s

1000au Channel maps trace isovelocity contours

Data from Öberg+2021, Czekala+2021, Law+2021, Teague+2021

v = 0.06 km/s

Separating the CO layers at high spectral resolution

Mapping the CO layers : velocity "kink"

1'' = 100au

$\Delta v = +1 \text{km/s}$

kink in the isovelocity curve

Evidence for embedded planet

Localised velocity "kink" deviation $\approx 15\%$ from **Keplerian rotation**

Distance 230au (assuming planet is in the midplane)

Gas density Phantom model

Gas density

Phantom model

Gas density

Phantom model

Gas density Phantom model

Amplitude of the wake depends on size and speed of the boat

Or

planet mass and orbital separation

Gas density Phantom model

Deviation from Keplerian velocity

Observations vs models

Post-processing of Phantom simulation with RT code MCFOST

Planet mass $\approx 2M_{Jup}$

Good agreement with semi-analytical precription. Bollati et al., 2021

$$\Delta v_p \propto \frac{m_p}{m_{\rm th}} = \frac{m_p}{M_*} \left(\frac{h_p}{r_p}\right)^{-1}$$

-3

Coronagraphic imaging with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveals a ~450 AU radius circumstellar disk around the Herbig Ae star HD 163296. A broadband (0.2–1.0 μ m) reflected light image shows the disk oriented at a position angle of 140° ± 5° and inclined to our line of sight by ~60° ± 5°. The disk includes an annulus of reduced scattering at 325 AU and exhibits a flat trend of surface brightness in to 180–122 AU (1".5–1"), consistent with a cleared central zone. For $r \ge 370$ AU the disk surface brightness drops as r to the approximately -3.5 power. The disk cannot be traced beyond 450 AU in our data. The disk is accompanied by a chain of nebulosities at P.A.=42°.5±3°.5, compatible with detection of a Herbig-Haro flow. The HD 163296 disk most closely resembles the disk of HD 141569. As in the HD 141569 system, the dynamical effects of a planet may be necessary to explain the structure in the outer disk.

Subject headings: circumstellar matter — planetary systems — stars: individual (HD 163296) — stars: pre-main-sequence

Coronagraphic imaging with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveals a ~450 AU radius circumstellar disk around the Herbig Ae star HD 163296. A broadband (0.2-1.0 μ m) reflected light image shows the disk oriented at a position angle of 140° ± 5° and inclined to our line of sight by ~60° ± 5°. The disk includes an annulus of reduced scattering at 325 AU and exhibits a flat trend of surface brightness in to 180-122 AU (1".5-1"), consistent with a cleared central zone. For $r \ge 370$ AU the disk surface brightness drops as r to the approximately -3.5 power. The disk cannot be traced beyond 450 AU in our data. The disk is accompanied by a chain of nebulosities at P.A. =42°.5±3°.5, compatible with detection of a Herbig-Haro flow. The HD 163296 disk most closely resembles the disk of HD 141569. As in the HD 141569 system, the dynamical effects of a planet may be necessary to explain the structure in the outer disk.

Subject headings: circumstellar matter — planetary systems — stars: individual (HD 163296) — stars: pre-main-sequence

Coronagraphic imaging with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveals a ~450 AU radius circumstellar disk around the Herbig Ae star HD 163296. A broadband (0.2-1.0 μ m) reflected light image shows the disk oriented at a position angle of 140° ± 5° and inclined to our line of sight by ~60° ± 5°. The disk includes an annulus of reduced scattering at 325 AU and exhibits a flat trend of surface brightness in to 180-122 AU (1".5-1"), consistent with a cleared central zone. For $r \ge 370$ AU the disk surface brightness drops as r to the approximately -3.5 power. The disk cannot be traced beyond 450 AU in our data. The disk is accompanied by a chain of nebulosities at P.A. =42°.5±3°.5, compatible with detection of a Herbig-Haro flow. The HD 163296 disk most closely resembles the disk of HD 141569. As in the HD 141569 system, the dynamical effects of a planet may be necessary to explain the structure in the outer disk.

Subject headings: circumstellar matter — planetary systems — stars: individual (HD 163296) — stars: pre-main-sequence

Coronagraphic imaging with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveals a ~450 AU radius circumstellar disk around the Herbig Ae star HD 163296. A broadband (0.2-1.0 μ m) reflected light image shows the disk oriented at a position angle of 140° ± 5° and inclined to our line of sight by ~60° ± 5°. The disk includes an annulus of reduced scattering at 325 AU and exhibits a flat trend of surface brightness in to 180-122 AU (1".5-1"), consistent with a cleared central zone. For $r \ge 370$ AU the disk surface brightness drops as r to the approximately -3.5 power. The disk cannot be traced beyond 450 AU in our data. The disk is accompanied by a chain of nebulosities at P.A. =42°.5±3°.5, compatible with detection of a Herbig-Haro flow. The HD 163296 disk most closely resembles the disk of HD 141569. As in the HD 141569 system, the dynamical effects of a planet may be necessary to explain the structure in the outer disk.

Subject headings: circumstellar matter — planetary systems — stars: individual (HD 163296) — stars: pre-main-sequence

INFERRED ~ 20 YEARS AGO!

Coronagraphic imaging with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveals a ~450 AU radius circumstellar disk around the Herbig Ae star HD 163296. A broadband (0.2–1.0 μ m) reflected light image shows the disk oriented at a position angle of 140° ± 5° and inclined to our line of sight by ~60° ± 5°. The disk includes an annulus of reduced scattering at 325 AU and exhibits a flat trend of surface brightness in to 180–122 AU (1".5–1"), consistent with a cleared central zone. For $r \ge 370$ AU the disk surface brightness drops as r to the approximately -3.5 power. The disk cannot be traced beyond 450 AU in our data. The disk is accompanied by a chain of nebulosities at P.A. =42°.5±3°.5, compatible with detection of a Herbig-Haro flow. The HD 163296 disk most closely resembles the disk of HD 141569. As in the HD 141569 system, the dynamical effects of a planet may be necessary to explain the structure in the outer disk.

Subject headings: circumstellar matter — planetary systems — stars: individual (HD 163296) — stars: pre-main-sequence

Rich et al 2020

Velocity deviations might be common

Elias 2-27

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Δ Dec ["]

0

 $^{-1}$

 $= 1.70 \, \text{km/s}$

0

 $^{-1}$

GW Lup

Sz 129

Pinte et al., 2020

HD 163296 #1

WaOph 6

<u>co-Pl</u>s: Myriam Benisty, Stefano Facchini, Misato Fukagawa, Christophe Pinte, Richard Teague

New level of data quality (28 m/s, 0.1", >10h per source)

A 180h ALMA Large Program to search for embedded planets

+ Roman Space Telescope (~ 2026) : coronographic contrast < 10⁻⁷

4. Solar systems analogues are common, but we cannot resolve them yet

ARE GAPS AND RINGS TYPICAL?

ARE GAPS AND RINGS TYPICAL?

5. Planet formation must be rapid (<1 Myr)

There is not enough mass in protoplanetary discs to form planets

Ansdell+2016: ALMA survey of protoplanetary discs in Lupus molecular cloud

There is not enough mass in protoplanetary discs to form planets

Ansdell+2016: ALMA survey of protoplanetary discs in Lupus molecular cloud

6. Planet formation occurs in a dynamic environment

Our understanding of star formation

Dimensions: 82500. AU

Time: 197220. yr

Matthew Bate

Our understanding of star formation

Dimensions: 82500. AU

Time: 197220. yr

Matthew Bate

i.e. planet formation happens during this...

Dimensions: 5156. AU

Time: 221969. yr

Dimensions: 5156. AU

Time: 252905. yr

Matthew Bate

(a)

1.0" (230.0 AU)

ALMA image of protoctallar disc in L1/18 IRS3B

- - 0.120

STELLAR FLYBYS

AS205 in CO with ALMA Kurtovic et al. (2018)

STELLAR FLYBYS

AS205 in CO with ALMA Kurtovic et al. (2018)

Was the outer solar system shaped by a stellar flyby? (Pfalzner et al. 2018)

Large scale infall

Concluding remarks

- Direct imaging of protoplanets yield a few stunning detections, and candidates to follow-up.
- the disc is massive
- At least some of the cavities and gaps are carved by planets.

•Simultaneous detection in imaging + kinematics: will provide luminosity + mass of planets, as pathway to constrain entropy and distinguish between planet formation scenarii

So far probing tip of the iceberg. Exciting discovery space ahead of us. Planet formation is rapid and occurs in a dynamic environment, while

ALMA can also detect the kinematic signatures of embedded planets.

