

Demography of planetary systems

Remo Burn

Max Planck Institute for Astronomy, Heidelberg, Germany

Collaborators: M. Schlecker, A. Emsenhuber, H. Klahr, C. Mordasini, T. Henning, L. Mishra, J. Venturini, J. Haldemann, J. D. Melon Fuksman

Content

- Planet Formation
- Exoplanet Demographics
- Planetary population synthesis
- Exoplanetary radius valley

Credits: NASA, ESA, M. Hutchison

Planet Formation Overview

- Thousands of discoveries
- Enables Statistical studies

 Known and disputed demographic features

Orbital Period [days]

- Known and disputed demographic features
 - Sub-Jovian deserts
 - Neptunian desert / hot-Neptune desert (Mazeh+ 2005/2016)
 - Most likely shaped by photoevaporation (Owen&Lai 2018)

- Known and disputed demographic features
 - Sub-Jovian deserts
 - Neptunian desert / hot-Neptune desert (Mazeh+ 2005/2016)
 - Most likely shaped by photoevaporation (Owen&Lai 2018)
 - sub-Saturn mass desert
 - Planet desert / runaway gas accretion desert (Ida&Lin 2004, Mordasini+ 2009, Mayor+ 2011, Bennett+ 2021)

Known and disputed demographic features

- Sub-Jovian deserts
 - Neptunian desert / hot-Neptune desert (Mazeh+ 2005/2016)
 - Most likely shaped by photoevaporation (Owen&Lai 2018)
 - sub-Saturn mass desert
 - Planet desert / runaway gas accretion desert (Ida&Lin 2004, Mordasini+ 2009, Mayor+ 2011, Bennett+ 2021)
- Hot Jupiter/Cold Jupiters (Mayor&Queloz 1995)
 - Turnover at iceline (Suzuki+ 2016,Pascucci+ 2018, Fernandes+ 2019)

Known and disputed demographic features

- Sub-Jovian deserts
 - Neptunian desert / hot-Neptune desert (Mazeh+ 2005/2016)
 - Most likely shaped by photoevaporation (Owen&Lai 2018)
 - sub-Saturn mass desert
 - Planet desert / runaway gas accretion desert (Ida&Lin 2004, Mordasini+ 2009, Mayor+ 2011, Bennett+ 2021)
- Hot Jupiter/Cold Jupiters (Mayor&Queloz 1995)
 - Turnover at iceline (Suzuki+ 2016,Pascucci+ 2018, Fernandes+ 2019)
 - 'Apparent separation of hot and cold Jupiters

Orbital Period [days]

Known and disputed demographic features

- Sub-Jovian deserts
 - Neptunian desert / hot-Neptune desert (Mazeh+ 2005/2016)
 - Most likely shaped by photoevaporation (Owen&Lai 2018)
 - sub-Saturn mass desert
 - Planet desert / runaway gas accretion desert (Ida&Lin 2004, Mordasini+ 2009, Mayor+ 2011, Bennett+ 2021)
- Hot Jupiter/Cold Jupiters (Mayor&Queloz 1995)
 - Turnover at iceline (Suzuki+ 2016,Pascucci+ 2018, Fernandes+ 2019)
 - 'Apparent separation of hot and cold Jupiters
- Radius Valley (Fulton+2017)
 - Slope with stellar mass & orbital period/irradiation?

• Trends

- with stellar [Fe/H]
 - Increasing with giant planet incidence (e.g. Santos+2001)
 - Relatively flat for Earth-type planets (Buchhave+2013)
 - Eccentricity of giant planets increases (Dawson+2013)

• Trends

- with stellar [Fe/H]
 - Increasing with giant planet incidence (e.g. Santos+2001)
 - Relatively flat for Earth-type planets (Buchhave+2013)
 - Eccentricity of giant planets increases (Dawson+2013)
- with stellar mass
 - Increasing giant planet occurrence (Endl+ 2006, Butler+ 2006, Gaidos+ 2013, Ghezzi+ 2018, Jordán et al. 2022)
 - But exceptional giants around late M dwarfs exist (Sabotta+2021, Bryant+2023)

- Characterization stage: Compositional statistics
 - Over-density of water-worlds (Luque&Palle 2022)

- Characterization stage: Compositional statistics
 - Over-density of water-worlds (Luque&Palle 2022)

Planet Formation Overview

Planet Formation Overview

- Connects observed disks with observed planets via formation models
- New generation of simulations
 - Emsenhuber+ 2021 (a,b), Schlecker+ 2021 (a,b), Burn+ 2021
 - Start with already formed, small planetesimals and moon-sized embryos in smooth disks
 - Single stars
 - Global models including evolution of planets

and the for Astronomic Hereiner

- Connects observed disks with observed planets via formation models
- New generation of simulations
 - Emsenhuber+2021 (a,b),
 Schlecker+2021 (a,b), Burn+2021

- Connects observed disks with observed planets via formation models
- New generation of simulations
 - Emsenhuber+2021 (a,b),
 Schlecker+2021 (a,b), Burn+2021

STRUCTURES

EXCELLENCE

- Trends with stellar mass
 - Qualitative agreement with observations
 - Tens of percent chance for each star to host a planet in the habitable zone

Trends with stellar mass

Burn+ 2021

Qualitative agreement with observations
 Tens of percent chance for each star to host a planet in the habitable zone

- Giant Planets exist around low-mass stars
 - Not predicted by standard models
 - zero giants for stellar Masses
 < 0.3 solar masses
 - Not necessarily a mass problem → Reduced/inhibited migration allows for some giant planet formation

STRUCTURES CLUSTER OF FXCFLLENCE

- Giant Planets exist around low-mass stars
 - Not predicted by standard models
 - zero giants for stellar Masses
 < 0.3 solar masses
 - Not necessarily a mass problem → Reduced/inhibited migration allows for some giant planet formation

STRUCTURES CLUSTER OF FXCELLENCE

Radius Valley

- Observed radius valley (Fulton+2017,2018)
- Observational constraints
 - Inconclusive direct evidence He absorption (Kasper+2020, Zhang+2022), H₂O detection (Benneke+2019)
 - Indirect evidence for water worlds (Diamond-Lowe+2022, Luque&Palle 2022, for M stars)
- Mass loss process can shape the valley (core- or XEUV-powered, e.g. Owen 2019 for a review)

Radius Valley

Possible sub-Neptune

Orbital Migration

Indications for orbital migration of planets

- (near-)resonant systems
- super-Earth formation
- theoretical necessity
- Leads to water world formation

Radius Valley

Possible sub-Neptune?

Methods

• Solar-type star

• Formation (Emsenhuber+2021)

- planetesimal-based solid accretion
- N-body interactions (N_{ini}=100, calculated for 100 Myr)
- Giant impacts
 - Impact stripping
- Orbital migration
- Consistent gas accretion with 1D internal structure calculation

Evolution

- Cooling & contraction with initial stage given by formation
- Atmospheric escape of H/He mixture (Kubyshkina & Fossati 2021)
- Stellar evolution in X-ray and bolometric luminosity
- Interior structure with rock and condensed ice (Seager+2007)
- Tidal orbital decay
- Apply observational Kepler bias
 - KOBE, Mishra+2021

Results

- Condensed H₂O
- Valley at wrong location (3-4 Re)
- Depends on mass distribution

Radius Valley

Impossible sub-Neptune

(see also Jin&Mordasini 2018)

Phases of water

- Expect vapor interior to runaway greenhouse limit (e.g. Boukrouche 2021)
- Water in close-in sub-Neptune is in supercritical vapor and superionic fluid state

$$a_{\text{runaway}} = \sqrt{\frac{(1 - \alpha_{\text{al}})L_{\star}}{16\pi I_{\text{OLR}}}}$$
$$I_{\text{OLR}} = 281 \,\text{W} \,\text{m}^{-2}$$

Radius Valley

- Water should be in steam atmospheres (Turbet+2019)
 - Could also explain the valley (Zeng+2019,Mousis+2020, Venturini+2020)
 - (Partial) Mixing with H/He is expected (Pierrehumbert 2022)
- Can a uni-modal planet mass distribution reproduce the observed valley if there are steam atmospheres?

Possible sub-Neptune

Methods

• Solar-type star

• Formation (Emsenhuber+2021)

- planetesimal-based solid accretion
- N-body interactions (N_{ini}=100, calculated for 100 Myr)
- Giant impacts
 - Impact stripping
- Orbital migration
- Consistent gas accretion with 1D internal structure calculation

Evolution

- Cooling & contraction with initial stage given by formation
- Atmospheric escape of water+H/He mixture
 - H/He: Kubyshkina & Fossati 2021
 - Water: Johnstone 2020
- Stellar evolution in X-ray and bolometric luminosity
- Interior structure with new equation of state for water (AQUA, Haldemann+2020)
- Tidal orbital decay
- Apply observational Kepler bias
 - KOBE, Mishra+2021

Results

- Vapor H₂O mixed with H/He
- Valley at right location (3-4 R_ε)
- Separates rocky from H₂O-rich

Results with KOBE (Kepler Bias)

DNIVERSITÄT BERN DATA THE HAMME FOR AStronometer

Results with KOBE (Kepler Bias)

 Radii agree qualitatively with observations

 u^{b}

Results with KOBE (Kepler Bias)

- Radii agree qualitatively with observations
- Within 30 d, even quantitatively
 - Perfect match for rocky planets

 \mathbf{u}^{b}

Variations

- Without evaporation, H/He rich planets populate all radii
 - Makes evaporation a necessary but not dominant process

with evaporation (nominal)

Conclusion

- Updated planetary population synthesis models can be used for small planets
 - Occurrence of habitable planets ranging from 0.1 to ~1 depending on size range
- Reduction of giant planet formation increases habitable planet occurrence around intermediate mass stars
- Radius valley feature is not inconsistent with abundant water (steam) worlds

