

The Detection and the Surface Mapping of a Terrestrial Planet in a Habitable zone

30th Anniversary of the Rencontres du Vietnam "Windows on the Universe" in Quy Nhon, Vietnam on Aug. 11, 2023

Yasunori Hori

Astrobiology Center National Astronomical Observatory of Japan

30% Gas giant

The size of Saturn or Jupiter (the largest planet in our solar system), or many times bigger. They can be hotter than some stars!

31% SUPER-EARTH

Planets in this size range between Earth and Neptune don't exist in our solar system. Super-Earths, a reference to larger size, might be rocky worlds like Earth, while mini-Neptunes are likely shrouded in puffy atmospheres.

4% Terrestrial

Small, rocky planets. Around the size of our home planet, or a little smaller.

35% NEPTUNE-LIKE

Similar in size to Neptune and Uranus. They can be ice giants, or much warmer. "Warm" Neptunes are more rare.

5000 PLANETS FOUND

The Solar System in the Exoplanet Population

Are the solar system-like planets special or common?

Planet Surveys Toward the Discovery of "ExoEarths"

Ground-based Extreme Precision RV (~10 cm/s) (e.g. Crass et al. 2021)

Understanding of stellar jitters (e.g. spots, granulation, & oscillations) Removal of telluric contamination \rightarrow photon noise limit

(e.g.) HARPS, ESPRESSO (VLT) (Pepe et al. 2013) EXPRES (LDT) (Jurgenson *et al.* 2016) NEID (WIYN) (Schwab et al. 2016) Keck Planet Finder (Gibson et al. 2016)

\rightarrow EarthFinder (~cm/s, 2032?)

(Plavchan et al. 2019)

Space-based Planet Surveys in the Late 2020s

Gaia, JWST, and Roman CGI

Saturn-mass or more massive gas giants beyond a few au.

Bulk Compositions of Earth-sized Planets and Sub-Neptunes

The interiors of Earth-sized planets show a variety of rocky compositions. (e.g.) Mg(Si)/Fe (cf) The atmosphere of an ultra-short period planet provides a clue to exploring mantle/core compositions.

Many of sub-Neptunes are likely to have atmospheres and be water-worlds. (e.g.) Detection of H₂O in the atmosphere of HAT-P-11b and K2-18b (Fraine et al. 2014; Tsiaras et al. 2019)

JWST Observations of Earth-sized Planets around a Nearby Star

TRAPPIST-1b may have no atmosphere?

(Moran *et al*. 2023)

Water-rich atmosphere of GJ 486b with 1.3 times Earth-radii

New Era Toward Characterization of Habitable Planets

Detection of habitable Earth-sized planets around a Sun-like star from PLATO and **EPRV** Observations

2020s	JWST (e.g. NIR Spec, MIRI)
	ESA/Ariel
2030s	30m-class ground-based telescopes (E (e.g. IRIS, MODHIS for TMT)
2040s	6m-class space telescope (LUVEx)

H_2O	liquid water on the surface	
O ₂ , O ₃ CH ₄ N ₂ O	biosignature	abiotic oxygen (false pc photodissociation of H ₂ (cf) O ₂ excess : O ₂ -O ₂ C
H ₂ S, SO ₂ , CO ₂	Volcanic activity	H ₂ SO ₄ , S ₈ produced k photochemical reacti

(Kaltenegger et al.2010; Hu et al.2013; Misra et al.2015; Hu et al. 2013; Loftus et al.2019)

Current Status of Exoplanet Characterization

Rotation period, obliquity

Imaging of "Earth 2.0" in Reflection Spectra

(a Sun-like star at 10 pc) is

The flux ratio of reflection light from a planet to stellar light

- **10**-10(**0.1**") for Earth, **10**-9(**0.5**") for Jupiter, **10**-11(**3**") for Neptune.

Detectability of Reflection Light from Exoplanets

The flux ratio of reflection light from a planet to stellar light (a Sun-like star at 10 pc) is **10**⁻¹⁰(**0.1**") for Earth, **10**⁻⁹(**0.5**") for Jupiter, **10-11 (3")** for Neptune.

Next-generation space telescope – a habitable planet around a nearby Sun-like star 30m-class telescope – a habitable planet around a nearby M dwarf

10m-class telescope + Extreme AO

(SCExAO/Subaru, SPHERE/VLT, GPI/Gemini)

Detection limit $\sim 10^{-6} (0.2'')$

Roman space telescope (CGI)

Detection limit ~ 10^{-9} (~0.2'')

LUVEx

Detection limit ~ 10^{-10} ($\leq 0.1''$)

TMT/PSI (Planets System Imager)

Detection limit ~10⁻⁸ (~0.01")

What Should We Detect as a Sign of Life?

A standard(?) sequence from simple molecules to protocell entity

several long-chain proteins simultaneously.

The compelling evidence for life on an Earth-like planet is to detect

Anatomy of ExoEarths Using Reflection light

What kind of information can we extract from reflection spectra of exoEarths?

- Surface mapping (e.g. land, ocean, cloud)
- Atmosphere (e.g. CO₂, H₂O, O₂, T-P profile)
- **Rotation** (period, obliquity)
- Vegetation

European-Extreme Large Telescope (E-ELT 39.3m (2025)

The Surface Mapping of ExoEarths

What kind of information can we extract from the reflection spectra of exoEarths?

- Surface mapping (e.g. land, ocean, cloud)
- Atmosphere (e.g. CO₂, H₂O, O₂, T-P profile)
- **Rotation** (period, obliquity)
- Vegetation

European-Extreme Large Telescope (E-ELT 39.3m (2025)

Giant Magellan Telescope (GMT) 24.5m (2029)

A Hint of Vegetation on ExoEarths

1) "Red edge"

A sudden rise in reflectance appears near 680nm - 730nm for chlorophyll (Chl) a, b and 1-1.1µm for bacteriochlorophyll (Bchl) b

Biofluorescence from Vegetation

(O'Malley-James & Kaltenegger, 2016; 2018)

A Hint of Vegetation on ExoEarths

1) "Red edge"

A sudden rise in reflectance appears near 680nm - 730nm for chlorophyll (Chl) a, b and 1-1.1µm for bacteriochlorophyll (Bchl) b

(cf) Oxygenic photosynthesis (Chlorophyll) (e.g.) cyanobacteria – CO_2+H_2O Anoxygenic photosynthesis (Bacteriochlorophyll) (e.g.) purple bacteria, green sulfur bacteria $-CO_2+H_2S$

2) Biofluorescence (O'Malley-James & Kaltenegger, 2016; 2018)

(Komatsu, YH et al. 2023)

Further Characterization of Exoplanets

Surface environments

(e.g.) land, ocean, vegetation volcanic activity

Distance

Bulk compositions

Rotation period, obliquity

The detection of exoplanet atmospheres **Atmospheric escape Atmospheric compositions Clouds and haze**

Universality of an Exomoon around Planets

Satellites exist around Earth, Mars and all the giant planets in the solar system.

Formation processes:

a) solid accretion in a circumplanetary disk around a gas giant

Jupiter or More Massive Exoplanets

The system of multiple large satellites around a massive gas giant (Fujii, Ogihara, & YH, *submitted*)

(e.g. Wagner et al. 2018; Haffert et al. 2019; Isella et al. 2019; Benisty et al. 2021)

Universality of an Exomoon around Planets

Satellites exist around Earth, Mars and all the giant planets in the solar system.

Formation processes:

a) solid accretion in a circumplanetary disk around a gas giant - The system of multiple large satellites around a massive gas giant (Fujii, Ogihara, & YH, submitted) b) giant impact on a planet or gravitational capture of large body – moon formation around a rocky planet with < 6 Earth-mass or an icy planet with < Earth-mass (Nakajima et al. 2022)

Recent theoretical studies of moon formation predict the existence of moons around a gas giant and a lowmass rocky/icy planet

Toward the Detection of Exomoons

The detection of an exomoon is true or false?

Kepler-1708b-i (Super-Earth + Jupiter@1.64 au) (Kipping et al., 2022) Kepler-1625b-i (Neptune + Jupiter-sized@0.98 au) (Teachey & Kipping, 2018; Kipping, 2020) But no evidence? (Heller *et al.* 2019; Kreidberg *et al.* 2019)

A binary planet rather than an exomoon?

$$\Delta t_{\rm TTV} \sim 36 \chi \left(\frac{M_{\rm moon}}{M_{\oplus}}\right) \left(\frac{M_{\rm P}}{M_{\rm Jup}}\right)^{-2/3} \left(\frac{M_{\star}}{M_{\odot}}\right)^{-1/3} \left(\frac{P_{\rm p}}{1 \, {\rm yr}}\right) f(e_{\rm p}, e_{\rm moon}, \bar{\omega}_{\rm p}, \bar{\omega}_{\rm moon}) = a_{\rm moon}$$

(Simon *et al.* 2005)

Photocentric TTV

400

(Sartoretti & Schneider, 1999; Szabo et al. 2006; Simon *et al.* 2007; Kipping, 2009)

200

600

Planetary Magnetic Fields Are Common

 Earth-mass planets or fast-rotating low-mass super-Earths • Giant planets (Yadav & Thorgren, 2017; YH, 2021) (e.g. Gaidos et al. 2011; Tachinami et al. 2011; Zuluaga et al. 2011) If ice giants have a low mass fraction of atmosphere, its mass should be less than several times Earth-mass. (Tian & Stanley, 2013)

- Planetary magnetic fields (B) are generated by convective motions in an electrically conducting fluid, the so-called planetary dynamos.
 - A dynamo-driven **B** seems to be common among various types of planets.

(e.g.) Mercury, Earth, Jupiter, Saturn, Uranus, Neptune, and possibly, Ganymede

How Do We Detect Planetary Magnetic Fields?

1 Interactions between a planetary magnetic field and high-energy, charged particles coming from a host star

2 Polarization in spectral lines in a magnetic field (e.g.) He I triplet lines escaping from a close-in planet

• B < 1kG : atomic-level linear/circular polarization split of the atomic energy levels in multi-substates

Tentative detection? of circularly-polarized emissions from τ Boötis at LOFAR (14-21MHz)(Turner et al. 2021)

3 Star-Planet Interactions (SPIs) (e.g. Cuntz *et al.* 2000; Shkolnik *et al.* 2003; 2005; Saur et al. 2013; Lanza, 2013)

The Call K flux variations of HD 179949, HD189733, τ Boötis, and υ Andromedae are correlated with orbital periods of their hot Jupiters (Cauley et al. 2019)

The behavior of gases escaping from a planet (4)

A magnetotail of HI and CII gas flowing out from HAT-P-11b (Ben-Jaffel et al. 2022)

(e.g. Grieβmeier *et al*. 2005; 2007)

(a) Synchrotron radiation Emissions from accelerated electrons in a magnetic field

(b) Auroral radio emission

The cyclotron radiation from electrons moving along the magnetic field of a planet is attributed to the electron- cyclotron maser instability.

(Oklopčić & Hirata, 2018; Oklopčić et al. 2020)

Expected Flux Density of Radio Emissions from Planets

Flux Density [Jy]

Cyclotron frequency: *f*

$$f = \frac{eB}{2\pi m_{\rm e}c} \sim 2.8 \left(\frac{B}{1\,{\rm G}}\right) {\rm MHz} \qquad \begin{array}{l} m_e : \text{electron mass} \\ c : \text{light speed} \\ e : \text{elementary charge} \end{array}$$

(cf) Plasma frequency
$$f_{\rm pe} = \sqrt{rac{n_{\rm e}e^2}{2\pi m_{\rm e}}} \sim 8.98\,{\rm MHz}$$

Planetary magnetic field (B) v.s Radio emission power (P_{rad})

 $P_{\rm rad} \propto B^{2/3} n_0^{2/3} v^{7/3} a^{-4/3}$

(e.g. Grieβmeier *et al*.2005)

a : semimajor axis of a planet

v, n₀: velocity and number density of charged particles from a star

Radio flux density observed on the Earth (Φ)

$$\Phi \sim \frac{P_{\rm rad}}{\Omega d^2 \Delta f} \propto B^{-1/3} n_0^{2/3} v^{7/3} a^{-4/3} d^{-2} R_{\rm p}^2$$

d: distance from Earth, R_p : planetary radius Ω : solid angle of a beam, Δf : band width

Summary

The perspective of planet searches in the late 2020s and early 2030.

- The Roman space telescope will preferentially find Mars- and Earth-sized planets around an M dwarf.
- The Gaia and JWST can explore the distribution of gas giants more massive than Saturn beyond 1au.
- Near-infrared RVs have the potential of detecting planets orbiting a young star (10-100Myr).

A new era of 30m-class telescopes and LUVEx

- Imaging "Earth" and "Jupiter" around a nearby Sun-like star and an M dwarf.
- rotation properties of Earth-mass planets (and larger ones).
- The discovery of exomoons

Comparative studies on atmospheric compositions and geological evolution of terrestrial planets

• Extreme precision RVs and the PLATO will reveal the population of Earth-sized planets in a HZ around a Sunlike star.

Comprehensive understanding of the formation and orbital evolution of planetary systems The occurrence rate of a habitable Earth-sized planet and solar system-like planetary systems

• Information of detailed atmospheric compositions, surface environment such as ocean and vegetation,

