

Searches for FIPs at accelerators: status and prospects

Matthew Citron

30th anniversary of the Rencontres du Vietnam

10/08/23

Supported by funding from DOE Office of Science

What is a Feebly Interacting Particle?

- Common feature of "hidden sectors" in which dark matter is part of a hidden universe with no SM gauge interactions
- Hidden universe can have complex structure and provide solutions to mysteries beyond DM
- SM and new physics connected by a "feebly interacting" portal

M. Citron mcitron@ucdavis.edu

HIDDEN UNIVERSE 3D

COMING SOOP

FIPs in the MeV - GeV mass range

FIPs may be **copiously produced** at **high energy/intensity** accelerators

Searching for FIPs

Three generic signatures:

FIPs at the LHC

General purpose detectors do excellent job for wide range of signatures!

but...

Low energy signatures from FIPs face huge backgrounds, are very difficult to trigger and require highly nonstandard reconstruction

NB: **New trigger selections** for **Run 3** (started July 2022) and **detector upgrades** for the **HL-LHC** will greatly expand sensitivity (see backup)!

Dedicated detectors at the LHC

- **Backgrounds mitigated** by rock or dedicated shielding
- **Triggering simple** (or don't need trigger)
- Reconstruction **designed** for targeted signature(s)
 - Optimal detector design and position depend strongly on targeted signature: need range of different detectors!

FASER detector

FASER first search with Run 3 data!

New sensitivity to dark photons!

Very low background after selections: 2.4x10⁻³

Signal eff ~ 50%

Expect improvements in tracking/alignment, x10 more data and additional final state searches (HNLs, ALPs,...)

meter dean search for millicharged particles ngle photons in 3 adjacent large scintillators IP, within a small time window (15 appear in case of

- Use long scintillator bar array to detect (very) small ionisation from
- low $\frac{2400}{200}$ harged particles $\frac{1150V}{1250V}$ $\frac{1350V}{1450V}$ • Expected signal: few scintillation photons in multiple layers → each bar $\frac{400}{100}$ PNT must be capable of detecting a single scintillation photon
- Require hits in multiple layers within a small time window for stringent background rejection

 Modular design is easy to scale and adapt: proposals around the world include milliQan, FORMOSA (LHC), FerMINI (FNAL), SUBMET (JPARC) Hean -1.956 Std Dev 8.824

Run 3 milliQan experiment

Elapsed time difference between bar detector end panels

σ~2.5ns

10

CMS

 10^{2}

2104.07151

Beam

muons

20 ∆t[ns]

 10^{-1}

 10^{0}

mass [GeV]

10¹

- Combination of two scintillator-based ulletdetectors will provide excellent sensitivity to millicharged particles
- Installed and taking physics data now! ullet
- Search will follow example of Run 2 demonstrator

What could come next?

- The HL-LHC will provide over 3000 fb⁻¹ of p-p collisions
- Many proposals for dedicated detectors (summary in backup)!
- Focus on FPF: dedicated forward physics facility provides extensive probe of wide range of FIP-like signatures to fully exploit physics potential of the LHC!
- Facility allows longer, wider and new detectors for optimal sensitivity!

Detailed <u>white paper</u> with > 200 authors released in March 2022

Forward Physics Facility

FASER 2 FASERv2/AdvSND FORMOSA FLARE

- Purpose built cavern ~600m in front of ATLAS IP
- Five detectors provide
 comprehensive coverage of forward BSM and SM physics

14

FPF detectors: FORMOSA

- <u>FORMOSA</u>: forward detector sees
 up to factor ~ 250 higher mcp
 rate compared to central location
- Challenging location → prove feasibility with FORMOSA demonstrator in Run 3!
- Considering upgrades including high performance scintillator (CeBr3) <u>2203.05090</u>

- Measure showers from neutrinos or FIPs scattering/decay with ~16 ton LArTPC
- Big advantage compared to emulsion for DM scattering: real-time readout!
- ArgoNeuT shown feasibility of LArTPC for FIP searches!

FIP sensitivity at the FPF

See later for A' → visible!

NB: just two examples of many!

CERN beam dumps

SPS provides multiple high intensity beams - ideal for FIP production!

- 400 GeV p beam (up to 3x10¹⁸ pot/year could be upgraded to ~10¹⁹ pot/year)
- 100-150 GeV e⁻ beam (up to 5x10¹² eot/year)
- ~160 GeV μ⁻ beam

 (currently ~10¹¹ mot/year
 and up to 10¹³ mot/year
 after LS3)

q What could come next in ECN3? W^{\pm} **SHADOWS** + HIKE (maintain kaon program) Long-lived MIB HNL (electron dominance) sensitivity (deflects 10muons) Decay volume: 20m 10 **MS** Timing **Tracker** Calo 10^{-} off axis Decay volume: 20m Spectrometer: 2.5x2.5m SPSC-EOI-022 **SHIP** + space for other ideas (LArTPC, TauFV, ...) $|U_{e}|^{2}$ **ÍLC** Target complex Decay volume: 50m Hadron absorber Muon shield 10^{-8} Spectrometer: 4x8m Scattering and Neutrino Detecto $C^3/CLIC$ (dump) PIONEER 10^{-9} FCC-ee Decay volum Access shaft (4x8m²) Spectrometer NA62 DUNE Particle ID 10^{-10} BBN 10^{-2} 10^{-1} 10 m_N [GeV] on axis SPSC-I-258 **Decision coming ~ end of 2023!** New access shaft (8x8m²)

Facilities across the world: neutrino

FNAL will provide wide range of dark sector sensitivity (see Nhan's talk!)

SUBMET millicharged particle detector at **J-PARC** (approved and under construction!)

M. Citron mcitron@ucdavis.edu

e.g. M³ sensitivity compared to NA64μ for L_μ-L_τ gauge boson

Other facilities across the world

PADME at DAΦNE

- Experiments using range of facilities will provide complementary probes
- Huge number of experiments not shown here (see Nhan's talk for a summary)!

Sensitivities: $A' \rightarrow visible$

NB: limits depend strongly on what A' couples to!

Limits extended by orders of magnitude in charge and mass

Sensitivities: A' \rightarrow DM

Limits extended by orders of magnitude in charge and mass

Summary

- An eco-system of dedicated experiments will fully exploit the physics potential of the LHC and high intensity facilities!
- Range of beams/facilities and detector technologies crucial for comprehensive coverage
- Many detectors taking data now excellent prospects for discovery
- Experiments at future facilities (DUNE, HL-LHC,...) cover much of the "interesting" phase space that explain g_μ-2 and/or give correct DM relic density