Jets and Jet Substructure

Matthew Schwartz Harvard University Aug 10, 2023

Recent progress in Jets

- Experimental progress
 - Improved calibration/modeling for run 3
 - Machine Learning methods expanding reach
 - Measuring many new observables
- Theory progress
 - Machine learning for tagging, measurement, searches
 - Resummed and fixed order calculations
 - Improvements in jet mass predictions
 - Energy-energy correlators
 - Top mass measurement improments

Charm tagging

Particle net (arXiv:1902.08570)

- Graph neural network
- takes momenta of particles
- Includes tracks, particle id, etc

- Higgs to cc is now possible
 - Current limit is 14 x Standard Model
 - Statistics limited
 - Could be seen in run 3

Standard Model measurements are important!

Need to improve measurements of top quark mass and α_s

- Lifetime of the universe depends on their values
- Important measurements within LHC reach

Andreassen, Frost, MDS arXiv:1707.08124

Status of α_s , PDG 2021

Hadron collider jet measurements

CDF 1.96 TeV (1j) ZEUS 320 GeV (1j) inclusive D0 1.96 TeV (1j) Mal.&Star. 7 TeV (1j) CMS arXiv:1304.7498 H1 319 GeV (1j) jets CMS 7 TeV (1j) 3 to 2 jet cross section ratios (R32) CMS 8 TeV (1j) 5 fb⁻¹ @ 7 TeV CMS Britzger (1j) ZEUS 318 GeV (R32) $\alpha_S(M_Z) = 0.1148 \pm 0.0014$ (exp.) ± 0.0018 (PDF) ± 0.0050 (theory) D0 1.96 TeV (RdR) CMS 7 TeV (R32) $= 0.1148 \pm 0.0055$ 5% uncertainty CMS 7 TeV (m3j) multi-je ATLAS 7 TeV (TEEC) ATLAS 7 TeV (ATEEC) ATLAS arXiv:2301.09351 H1 319 GeV (nj) Transverse energy-energy correlators (TEECs) ATLAS 8 TeV (TEEC) ATLAS 8 TeV (ATEEC) 139 fb⁻¹ @ 13 TeV ATLAS ATLAS 8 TeV (RdPhi) $\alpha_{\rm s}(m_Z) = 0.1175 \pm 0.0006 \,({\rm exp.})^{+0.0034}_{-0.0017}$ (theo.) 0.110 0.115 0.120 0.125 0.130 August 2019 $\alpha_{\rm s}({\rm M}_7^2)$ 3% uncertainty

PDG 2021: inclusive and multi-jet measurments

Can we get down to the 1% level with jets?

Jet mass measurments

Can we calculate the jet-mass distrubution from first principles?
Must avoid MC as much as possible to measure α_s

Very challenging theory calculation

- Mass is senstitive to many things under poor theoretical control
 - Underlying event, pileup, hadronization corrections, etc.

Soft drop

• Removes soft (low energy) particles from a jet in a systematic way

- Undo the clustring, starting from small angles
- Drop a particle if it is soft, meaning

$$\frac{p_{Ta}}{p_{Ta} + p_{Tb}} < z_{\rm cut} \left(\frac{\theta_{ab}}{R}\right)$$

 If neither particle is soft at a given step, stop declustering and return the soft-drop jet

- After soft drop
- Effect of MPI (underlying event) and pilueup are tiny
- Region exists where hadronization corrections are small

Soft-drop jet mass offers potential for α_s measurement at the LHC

Factorization formula

Physics at many scales relevant

- Jet mass, jet energy (pT)
- Collinear scale, soft scale, soft-collinear scale
- Soft drop cutoff scale (z τ)
 - •••

Although complicated, we can still understand it

- Frye, Larkoski, MDS, Yan 1603.09338 factorization
- Marzani et al. 1704.02210 power corrections
- Stewart, Hannesdottir, Pathak, MDS, Stewart 2210.04901
 - NNLL resummation with power corrections

Pertubative Uncertainties

Stewart, Hannesdottir, Pathak, MDS, Stewart arXiv:2210.04901

- Good perturbative control in fit region (-3 < log10 ξ < -1)
- Good convergence from LL -> NLL -> NNLL

Non-pertubative Uncertainties

- Six non-perturbative shape-function parameters
- Central values fit to pythia

$$\begin{split} \Omega^{\odot}_{1,q} &= 0.55\,\mathrm{GeV}\,, \quad \Upsilon^{\odot}_{1,0q} = -0.73\,\mathrm{GeV}\,, \quad \Upsilon^{\odot}_{1,1q} = 0.90\,\mathrm{GeV}\,, \quad \text{for quarks}, \\ \Omega^{\odot}_{1g} &= 0.91\,\mathrm{GeV}\,, \quad \Upsilon^{\odot}_{1,0g} = -0.24\,\mathrm{GeV}\,, \quad \Upsilon^{\odot}_{1,0g} = 0.90\,\mathrm{GeV}\,, \quad \text{for gluons}. \end{split}$$

Non-perturbative uncertainty relatively small

As expected – that's why we're using soft-drop

α_s measurement prospects

Stewart, Hannesdottir, Pathak, MDS, Stewart arXiv:2210.04901

- Should be able to measure α_s at the < 10% level now
- Dominated by perturbative uncertainty
 - Fit range chosen to minimize non-perturbative effects
- Different parameter values and different energies can help reduce overall uncertainty

Possible 5% measurement in the future

- Diffucit to get to < 1% level competitive with world average
- Non-perturbative effects are irreducible below ~ 3%

Energy-energy correlators

An alternative approach to studying jets

Correlation functions are standard tools in condensed matter and astonomy

Can also measure at colliders

Each event contributes multiple values of the observable

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta} = \sum_{i,j} \int d\sigma \frac{E_i E_j}{Q^2} \delta\left(\theta - \theta_{ij}\right) \sim \left\langle \Psi \left| \mathcal{E}\left(\hat{n}_1\right) \mathcal{E}\left(\hat{n}_2\right) \right| \Psi \right\rangle$$

Energy-energy correlators

Lee, Mecaj and Moult arXiv:2205.03414

$$\begin{aligned} \frac{\mathrm{d}\Sigma}{\mathrm{d}p_T \,\mathrm{d}\eta \,\mathrm{d}\{\zeta\}} &= \sum_i \mathcal{H}_i \left(p_T / z, \eta, \mu \right) \end{aligned} (5) \\ &\otimes \int_0^1 dx \, x^N \, \mathcal{J}_{ij}(z, x, p_T R, \mu) \, J_j^{[N]}(\{\zeta\}, x, \mu) \,. \end{aligned}$$

- EECs factorize and can be resummed
 - 3 point function predicted too

- 2-point function
- Good agreement with theory and CMS open data

EECs for α_s

 $0.1175 \pm 0.0001 \text{ (stat.)} \pm 0.0006 \text{ (sys.)}^{+0.0032}_{-0.0011} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0005 \text{ (mod.)}$

- Does not include any resummation
- Monte carlo used to include non-perturbative effects
- Scale uncertaintities dominate

EECs for α_s

Chenfeng Lu CMS, July 31, 2023 (talk at Boost)

- E3C/E2 in high-p_T jets
 - compared to NNLL theory (Chen et al. arXiv:2307.07510)

- Hadronization taken from average of pythia + herwig (3%)
 - Should use theory model
- Paper not published, hard to assess

e⁺e⁻ event shapes

Heavy jet masss

- NNLO fixed order Gerhmann et al, 0711.4711
- NNNLL resummation Chien, MDS 1005.1644
- Salam and Wicke 0102343
 - "Fits for αs from Heavy Jet Mass come out 10% smaller than for thrust"
- Constency with other event shapes needed to validate methodology

Heavy jet mass is qualitatively different from other event shapes

• Differs from thrust and C parameter in the 3-jet region

Power corrections in 3-jet region Nason & Zanderighi 2301.03607

- Sudakov Shoulder resummation MDS et al 2205.05702, 2306.08033
- Consistency with thrust and C parmater at 1% level would be convincing
- Stay tuned...

Top quark mass

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Direct measurments

Best measurement in lepton+jets channel $m_t = 171.77 \pm 0.38 { m GeV}$

Indirect measurments (cross sections)

Top quark mass with fat jets

Fully hadronic channel is very challenging

- Huge multijet backgrounds make tt event identification impossible
- In boosted regime, tops become collamated and easier to see

What is the top quark mass?

- Top quark is unstable, has color and charge
 - No well-defined pole-mass in quark propagator
 - MS-bar top mass is well-defined but hard to relate to data
 - useful for indirect measurements like cross section
 - Most experiments measure the "Monte Carlo" mass

Different MC tunes with same top mass give different distributions

- differences largely soft physics
- tuning uncertainty reduced with jet grooming (trimming, soft-drop)

	without W calibration		with W-calibration	
No grooming	$530 { m ~MeV}$		$200 { m ~MeV}$	(-62%)
Trimming	$530 { m ~MeV}$	(0.0%)	$170 { m ~MeV}$	(-68%)
Soft drop	$390 { m ~MeV}$	(-26%)	$140{\rm MeV}$	(-74%)
e^+e^-	$110 { m ~MeV}$	(-79%)	$50 { m ~MeV}$	(-90%)

Andreassen, MDS arXiv:1705.07135

Event ensembles

Flescher, Fraser, Hutchison, Osdiek, MDS arXiv:2011.04666

Fitting to peak/histogram shapes is inefficient

- Peak throws out useful information in tails
- Often need awkward parameterization of shape
- Why not just use all the information?

- For each event, measure m_{3j} (top mass), m_{2j} (W mass) and m_{3j}/m_{2j}
- Combine into one large array, sorted by m_{3j}

Can use all the information, not just peak

input into regression method

(not machine learning)

super fast, no training

EECs for top mass

Holguin et al. arXiv:2201.08393

Measure the 3-point function in boosted top events

Insensitive to hadronization

$$\widehat{\mathcal{M}}^{(n)}(\zeta_{12},\zeta_{23},\zeta_{31}) = \sum_{i,j,k} \frac{E_i^n E_j^n E_k^n}{Q^{3n}} \delta\left(\zeta_{12} - \hat{\zeta}_{ij}\right) \delta\left(\zeta_{23} - \hat{\zeta}_{ik}\right) \delta\left(\zeta_{31} - \hat{\zeta}_{jk}\right)$$

Factors of energy in definition suppress soft radiation

Looks promising for m_t measurment

- In principle, direct theory-experiment comparision with short-distance top definition
- Early days, but worth watching

Conclusions

A lot of exciting progress in jet physics

- Machine learrning
- Precision measurements
- Top mass determination
- Energy-energy correlators
- Heavy ion physics
- Lund plane kinematics
- Improvements in unfolding
- Jet energy calibration
- Antenna showers
- Hadronization models
- Fixed order matching
- Anomaly detection
- Heavy flavor tagging (e.g. h->cc)
- ...