

Properties of the medium formed in heavy-ion collisions at LHC

NISER

Bedanga Mohanty (National Institute of Science Education and Research, India & CERN, Switzerland)

Outline

- Introduction
- □ ALICE experiment
- Measurements and properties of medium
- □ Future upgrades
- □ Summary

Based on arXiv:2211.04384

Also see talk on Hadronisation in dense (and not-so-dense) environments by Jan Fiete Grosse-Oetringhaus (CERN, Geneva) 328 pages, 123 captioned figures, 3 tables, submitted to EPJC.

Relativistic heavy-ion collisions at LHC

Dataset collected

System	Year	Centre of mass energy (TeV)	Integrated luminosity
Pb-Pb	2010, 2011	2.76	75 mb ⁻¹
	2015, 2018	5.02	800 mb ⁻¹
Xe-Xe	2017	5.44	0.3 mb ⁻¹
p-Pb	2013	5.02	15 nb ⁻¹
	2016	5.02, 8.16	3 nb ⁻¹ , 25 nb ⁻¹
p-p	2009-2013	0.9, 2.76, 7, 8	200 mb ⁻¹ , 100 nb ⁻¹ , 1.5 pb ⁻¹ , 2.5 pb ⁻¹
	2015, 2017	5.02	1.3 pb ⁻¹
	2015-2018	13	136 pb ⁻¹
Run 3 – 700 bill Target for 2023	ion pp events at 13. - 30 pb ⁻¹	6 TeV collected. 2023 Targ	3: 4-5 weeks of Pb-Pb run expected get for $2023 - 3.25$ nb ⁻¹

Basic measurements

Windows on Universe, Rencontres du Vietnam, 30th Anniversary, Quy Nhon, 2023

5

Collectivity and hydrodynamics

Windows on Universe, Rencontres du Vietnam, 30th Anniversary, Quy Nhon, 2023

Macroscopic properties

- Energy density
- Size and lifetime of the system
- Temperature

Multiplicity

Stronger energy dependence than pp. Heavy-ion collisions are more efficient in transferring the initial beam energy into particle production.

Windows on Universe, Rencontres du Vietnam, 30th Anniversary, Quy Nhon, 2023

Source size & decoupling time

RHIC to the LHC - homogeneity region ~ twice larger. The decoupling time for midrapidity pions is ~ 40% larger.

Temperatures measured in ALICE at LHC

Phys.Rev.D 85 (2012) 054503

Windows on Universe, Rencontres du Vietnam, 30th Anniversary, Quy Nhon, 2023

Temperatures from direct photons at ALICE

Effective temperature $\sim 300-400$ MeV. Much larger than T_c from LQCD (156 MeV).

QGP formation at LHC.

Photon spectra are blue shifted by radial flow and in future we will measure it with dileptons ($p_{\rm T}$ int.) invariant mass spectra.

Windows on Universe, Rencontres du Vietnam, 30th Anniversary, Quy Nhon, 2023

Temperature from particle yields – chemical freeze-out

Inelastic collisions cease at ~ 156 MeV. Chemical freeze-out and quark-hadron transition around similar temperatures.

The temperatures ranges probed by central heavy-ion collisions at the LHC derived from ALICE measurements

Transport properties of QGP (using ALICE data)

□Shear viscosity

Bulk viscosity

Diffusion coefficient

□Jet transport coefficient

Theory vs. ALICE data

0.00

Centrality (%)

20 40

Centrality (%)

Nature Physics 15, pages 1113–1117 (2019)

1.0

0.04

Flow cumulants

- 8 v. (2

Mean p_T fluctuation

---- v.{2

- + Pb-Pb 2.76 TeV

---- 0 Pb-Pb 5.02 TeV

Physics Letters B 816, 136251 (2021)

Transport properties - Jet transport coefficient

Using R_{AA} and v_n for light and charmed hadrons at high- $p_{\rm T}$.

The ranges on the right of the plots represent 90% posterior intervals from the Bayesian analyses.

Windows on Universe, Rencontres du Vietnam, 30th Anniversary, Quy Nhon, 2023

GeV)

0 Ш

ALICE@RUN-5 & 6

High-precision beauty measurements - to establish a firm connection between parton transport, collective flow and hadronization

DD correlations - to discriminate between the different regimes of in-medium energy loss and reveal the onset of charm isotropisation

Multi-charm baryons, P-wave quarkonia, exotic hadrons – Hadron formation

Azimuthal asymmetry of electromagnetic radiation.

Chiral symmetry restoration.

Collectivity in small systems

Observables	Kinematic range
Heavy-flavour hadrons	$p_{ m T} ightarrow 0, \ \eta < 4$
Dielectrons	$p_{\rm T} \approx 0.05$ to 3 GeV/c, $M_{\rm ee} \approx 0.05$ to 4 GeV/c ²
Photons	$p_{ m T} pprox 0.1$ to 50 GeV/c, $-2 < \eta < 4$
Quarkonia and exotica	$p_{ m T} ightarrow 0, \ oldsymbol{\eta} < 1.75$
Ultrasoft photons	$p_{\rm T} \approx 1$ to 50 MeV/c, 3 < η < 5
Nuclei	$p_{ m T} ightarrow 0, \ oldsymbol{\eta} < 4$

The programme aims to collect an integrated luminosity of about 35 nb⁻¹ with Pb–Pb collisions and 18 fb⁻¹ with pp collisions at top LHC energy.

Letter of intent for ALICE 3: A next-generation heavy-ion experiment at the LHC, arXiv:2211.02491v1 [physics.ins-det]

ALICE 3 - Run 5 and 6

Summary (selected)

What are the thermodynamic and global properties of the QGP at the LHC ?

- 1. LHC create conditions that very much exceed those needed to form the QGP.
- 2. The initial QGP temperature ~ 5 times higher than deconfinement temperature T_{pc} = 155–158 MeV.
- Largest QGP energy densities ~ 12 GeV/fm³ at the early time of 1 fm/c.
- Volume at freeze-out is about 7000 fm³ and about twice higher than at top RHIC energy.

What are the hydrodynamic and transport properties of the QGP?

- 1. System is strongly-coupled at the scale of the QGP temperatures
- 2. Extracted shear viscosity over entropy density (η/s) values in the range $1/4\pi < \eta/s < 0.3$.
- 3. The charm spatial-diffusion coefficient D_s in the range $1.5 < 2\pi D_s(T)T < 4.5$ at T_{pc} . Evidence that charm quarks couple strongly with the QGP at low momenta.

How does the QGP affect the formation of hadrons?

- 1. Statistical hadronization models describe the yields of various lightflavour and heavy-flavour hadron over many orders of magnitude.
- 2. The chemical freeze-out temperature of about 156 MeV ~ deconfinement temperature, suggesting chemical equilibrium cannot be maintained easily after the QGP hadronizes.
- 3. Measurements of resonance yields and femtoscopic radii show that hadronic phase is prolonged, and the decoupling of particles is likely to be a continuous process, rather than a sudden kinetic freeze-out of all particle species at the same temperature.

Exciting set of upgrades in place and planned - stay tuned to exciting results from ALICE.

Thanks

