Windows on the Universe

August 10, 2023 ICISE, Quy Nhon Vietnam

Searches for sterile neutrinos

Mikhail Danilov, LPI, Moscow

There are several indications of a new neutrino with $\Delta m^2 \sim 1 \text{ eV}^2$, $\sin^2 2\theta_{ee} \sim 0.1$, Must be Sterile since $\Gamma_z \Rightarrow N_v = 3$

- 1. LSND, MiniBoone: $V_e(\overline{V}_e)$ appearance in $v_{\mu}(\overline{V}_{\mu})$ beams: > 60 Not confirmed by MicroBoone arXiv:2110.14054v2 but not excluded
- 2. SAGE and GALEX V_e deficit (GA) confirmed by BEST: > 5σ arXiv: 2109.11482, arXiv: 2201.07364, PRL 128.232501
- 3 Reactor V_e deficit (RAA): ~ 30 Explained by KI (arXiv:2103.01684), DayaBay, RENO experiments and new reactor neutrino flux models? Estienne et al arXiv:1904.09358, Letourneau et al, arxXiv:2205.14954
- 4. Neutrino-4 claim of sterile neutrino observation
 Δm²=7.3±1.17eV² and sin²2θ=0.36±0.12 2.7σ
 Phys.Rev.D 104, 032003 (2021)

These are statistically strongest laboratory indications of physics BSM!

LSND and MiniBooNE anomalous v_e appearance

In 1995 LSND observed excess of anti- v_e in anti- v_μ beam (~4.0 σ) In 2018 MiniBooNE observed excess of (anti)- v_e in (anti)- v_μ beam (~4.8 σ) Combined significance 6.0 σ - Statistically strongest lab. indication of New Physics

MicroBooNE did not confirm ve LEE arXiv:2110.14054

They observed even less v_e than expected The same neutrino beam $(0.5\% v_e (anti-v_e) only)$, much better e identification

MiniBooNE ve LEE central value excluded with $>3\sigma$

But not the whole parameter space!

4

Sterile neutrino interpretation of LEE is not completely excluded

1eX

Deficit of v_e in MicroBooNE could be explained by v_e disappearance with $sin^2 2\Theta_{ee} = 0.35$ $\Delta m^2_{14} = 1.25 \text{ eV}^2$

Significance 2.40

Denton arXiv:2111.05793 assuming v_e disappearance only

However analyses with all oscillations included are consistent with 3v model at 1o arXiv:2111.10359 and arXiv:2210.10216.

Joint MiniBooNE and MicroBooNE analysis (including v_e and v_μ disappearance) arXiv:2201.01724

MiniBooNE significance of 4.60 drops to 4.3(3.4)0 after MicroBooNE CCQE(Inclusive) channel inclusion

Joint Mini and MicroBooNE fit still prefers 3+1 model (3.4 σ) but fit quality is poor

Appearance and Disappearance results are in contradiction

Short-Baseline Neutrino Program at FNAL and JSNS² will clarify the situation

Gallium Anomaly (GA)

Deficit of v events in GALLEX and SAGE calibrations with radioactive sources \rightarrow GA - 3.0 σ (Giunti, Laveder 1006.3244)

Recently BEST confirmed GA with more than 50 ! arXiv:2109.11482

- No difference between inner and outer targets Rin = 0.791±0.05 and Rout = 0.766±0.05
- → No sign of oscillations. Only rate difference

Significant deficit implies large mixing

Serious tension with many experiments for v_s interpretation

However perfect agreement with Neutrino-4 and MicroBooNE 2.4 σ indication of v_s: $sin^2 2\theta_{ee} = 0.35 \pm 0.19_{0.16}$ $\Delta m^2_{14} = 1.25 \pm 0.74_{0.39} eV^2$ Denton <u>arXiv:2111.05793</u>

> Look for alternative explanations of GA See comprehensive review by Brdar, Gehrlein, Kopp arXiv:2303.05528

Possible conventional explanations of GA

Smaller cross-section for ⁷¹Ga(v_e, e⁻)⁷¹Ge

Recent reevaluation arXiv: 2303.13623V3 1% smaller σ than Bahcall model - not enough

<u>Smaller ⁷¹Ge half-life</u> Unexplained differences between measurements Giunti etal <u>arXiv:2212.09722</u> Second in accuracy result reduces significance to 3 o level

<u>New yet undiscovered exited low-lying state of 71Ga</u> Need 20% decays of 71Ge to this state to explain GA

Reduction of cross section would increase measured v_e pp flux above predictions based on total Solar luminosity However discrepancy would be at ~2 σ level only Bergstrom et al, arXiv:1601.00972, Nature 562 (2018), no. 7728 505–510.

Wrong activity of radioactive source Main heat in ${}^{51}Cr(e_{-}, v_{e})V^{(*)}$ comes from $V^* \rightarrow V + \gamma(320 \text{keV})$ 2% increase of BR(${}^{51}Cr \rightarrow {}^{51}V^*$) would solve GA (or additional new exited state)

Wrong efficiency of ⁷¹Ge extraction

SAGE had one extraction with very high amount of extra Ge. Reason not clear.

Possible BSM explanations of GA

(From Brdar, Gehrlein, Kopp arXiv:2303.05528)

Sharp MSW resonance at E~750keV (main ⁵¹Cr lines)

Interaction with ultra-light polarized vector DM φ

- Adjust parameters to avoid Solar constraints
 Decay to additional scalar and v is needed
- to avoid early Universe constraints
- BEST with ⁶⁵Zn source smoking gun test

Interaction with Dark Energy

Boehmer, Harko gr-qc/0701029, Tasinato 1402.6450, 1404.4883

Parametric resonance with scalar of vector DM Petcov hep-ph/9805262, Akhmedov hep-ph/9805272,

Losada arXiv: 2205.09769

Decaying sterile neutrinos

See Brdar et al,arXiv:2303.05528 and ref. therein v_s decays fast to S+ $v_e \rightarrow$

no v_e flux reduction in reactor experiments but E is smaller and IBD rate is smaller Does not solve tension with reactor results

Many other BSM ideas to resolve GA

Reactor Antineutrino Anomaly (RAA)

New calculations of antineutrino flux in 2011 were $\sim 6\%(2.5\sigma)$ above experiment

Mueller et al, arXiv:1101.2663, Huber arXiv:1106.0687, Mention et al, arXive:1101.2755 (RAA)

Deficit of v_e can be explained by oscillations to sterile v_s with m~ 1 eV In model with 3 active and 1 sterile neutrino (3+1 model) survival probability at short L

 $P_{ee} = 1 - \sin^2 2\Theta_{ee} \sin^2(\Delta m_{14}^2 L/4E)$

with $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)$, where U is 4×4 extended PMNS matrix

Reactor Antineutrino Anomaly (RAA)

New calculations of antineutrino flux in 2011 were $\sim 6\%(2.5\sigma)$ above experiment

Mueller et al, arXiv:1101.2663, Huber arXiv:1106.0687, Mention et al, arXive:1101.2755 (RAA)

Deficit of v_e can be explained by oscillations to sterile v_s with m~ 1 eV In model with 3 active and 1 sterile neutrino (3+1 model) survival probability at short L

 $P_{ee} = 1 - \sin^2 2\Theta_{ee} \sin^2(\Delta m_{14}^2 L/4E)$

with $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)$, where U is 4×4 extended PMNS matrix

Recent DANSS results are consistent with HM model

New (2019-2022) neutrino flux models

HKSS conversion model Hayen et al arXiv:1908.08302 increases RAA to 2.9 σ $\overline{R}_{HKSS} = 0.925^{+0.025}_{-0.023}$ Giunti et al, arXiv:2110.96820

EF summation model Estienne et al arXiv:1904.09358 **decreases RAA to 1.2\sigma** $\overline{R}_{EF} = 0.960^{+0.033}_{-0.031}$ Giunti et al, arXiv:2110.96820

Letourneau etal, model arxXiv:2205.14954 describes STEREO spectrum -> No RAA

New measurements indicate smaller contribution from ²³⁵U

Kurchatov Inst group observed 5.4% smaller ratio of β yields for ²³⁵U/²³⁹Pu arXiv:2103.01684 This can explain RAA! DayaBay, RENO, STEREO observed smaller ²³⁵U flux than in HM model which is based on ILL results

Phys. Rev. Lett. **123**, 111801, Phys. Rev. Lett. **122**, 232501

Data comparison with models Giunti et al, arXiv:2110.96820

Daya Bay and RENO results agree with EF and KI models

Tension with HM (2.6σ) and HKSS (2.8σ) models

RAA understood? Probably YES! However errors are still large

Data comparison with models Giunti et al, arXiv:2110.96820

DANSS σ agrees with HM within 2% (0.5 σ)				DANSS*	•••••		-2.29±0.20
Daya Bay Fit	▶		5.89±0.12	Daya Bay Fit		•	-1.88 ± 0.18
HM Model	•		6.27±0.15	HM Model	⊢ ●1		-2.54 ± 0.06
EF Model	•		6.02±0.20	EF Model		⊢ •−•	-1.83 ± 0.08
HKSS Model	. <u> </u>	•	6.34±0.16	HKSS Model	⊢ •−•		-2.57 ± 0.07
KI Model	•I		6.03±0.13	KI Model			-2.07 ± 0.06
HKSS-KI Model	••	4	6.15±0.14	HKSS-KI Model *DANSS	normalized	on Daya Bay σ	-2.08 ± 0.06
55 57	59 61 6		6 7	30 28	26 24	22 20 18	16 11
5.5 5.7	$\overline{\sigma}_f [10^{-43} \text{ cm}^2/\text{fission}]$	5.5 6.5 on]	0.7	-3.0 -2.0	-2.0 -2.4 d σ_f /df ₂₃₉ [1	-2.2 - 2.0 - 1.8 - 1.0 $0^{-43} \text{ cm}^2/\text{fission}$	1.0 -1.4

Daya Bay and RENO results agree with EF and KI models

Tension with HM (2.6 σ) and HKSS (2.8 σ) models

RAA understood? Probably YES! However errors are still large

And recent DANSS results are consistent with HM model Skrobova LaThuile_23

Model independent searches for v_s at reactors

Reactor models do not describe well antineutrino spectrum → Compare v spectra at different L - model independent

Antineutrino detection at reactors with Inverse Beta Decay (IBD)

$$\bar{\nu}_e + p
ightarrow e^+ + n$$
 $E_e \approx E_v - 1806 \text{ MeV}$

DANSS

2500 plastic scintillator counters with WLS readout (1m³)

```
L: 10.9-12.9m Changed 2-3 times a week
```

50 mwe overburden, S/B>50

Energy resolution 33%/JE

Kalinin NPP (Russia) 3.1GW (Core:h=3.7m, Ø=3.1m)

7.7M IBD-events in 6.5 years

Exclusion region calculated using Gaussian CLs method using E_{e+} in 1.5-6 MeV region

The most stringent limit reaches $\sin^2 2\theta < 5x10^{-3}$ level.

A very interesting part of 4v parameters is excluded.

The most probable point of RAA is excluded at $>5\sigma$ CL already in 2018

Best 4v fit point is not statistically significant (<2.1 σ)

Results with neutrino absolute counting rates

DANSS 90% C.L. contours

Practically all parameters preferred by BEST are excluded

Similar to Daya Bay-Bugey3 results

Exclusions depend on assumed uncertainty in reactor v flux (5%)

DANSS upgrade

New scintillator counters with good uniformity of response and fast YS2 WLS fibers readout from both sides. Light yield 130p.e./MeV JINST 17 (2022) P01031

Expected energy resolution 12%/JE 1.7 times larger detector volume

arXiv:2011.00896

- PSD removes 70% of background
- Depth 20mwe, S/B= 23

Hanbit NPP 2815 MW Large core size d=3.1m h=3.8m

Only one L=24m Compared with Daya Bay or RENO

Strong limits on sterile neutrino parameters Best point (ΔM^2 =2.37 eV²) agrees with RAA but p-value is 13% only FC limits are not shown

- hard to compare them with other experiments

NEOS-II took data 500 days in 2018-2020 Results on sterile v search expected in 2023 Seon-Hee Seo, Priv.Comm. 20

SM-3 85MW ²³⁵U Reactor (42×42×35cm³) (Dimitrovgrad, Russia)

1.8m³ LS detector (5x10 sections)

L=6-12m, $\sigma_E/E\sim16\%$ at 1MeV

No PSD; 3.5mwe => S/B~0.54

720 days ON 860 days OFF ~200ev./day

Neutrino-4

Indication of oscillations with large $\Delta m^2 \sim 7.3 \pm 1.17 eV^2$ and $\sin^2 2\theta = 0.36 \pm 0.12$ Significance 2.7 σ Phys.Rev.D 104, 032003 (2021)

Comparison with other experiments

There were concerns about validity of Neutrino-4 analysis MD J.Phys.Conf.Ser. 1390 (2019) 1, 012049, MD, N.Skrobova JETP Lett. 112 (2020) 7, 452 C.Giunti Phys.Lett.B 816 (2021) 136214, M.Andriamirado et al. ArXiv:2006.13147, Coloma et al. arXiv:2008.06083V2. Neurino-4 addressed several concerns This resulted in reduction of significance to 2.7σ

Neutrino-4 and BEST results agree nicely

Serious tension of Neutrino-4 result with

- Predictios for absolute reactor v flux compared with experimental results
- Solar neutrino data
- PROSPECT and STEREO experiments See e.g. Giunti et al arXiv:2101.06785

However Neutrino-4 result can't be excluded A.Serebrov et al, JETP v137, p.55(2023)

New experiments are needed to confirm or discard Neutrino-4 result

Neutrino-4 upgrade

Serebrov et al, Techn. Phys., 2023, V.68, No1, 15

- New 5.4m³ LS(0.2% Gd) detector in a new hall
- 100 sections with 2 PMT readout

- PSD

- L=6-15m

Sensitivity 2.7 times better than at Neutrino-4 Start of data taking in 2024! 22 Old setup will be upgraded in 2023 PSD

PROSPECT results and prospects

10⁻¹ └── 10⁻²

1.6 ton LS(Gd) 6 cells
 L=9.4-11.2m
 σ_E/E=9% at 1 MeV
 PSD
 S/B=0.9
 ILL 58MW Reactor

Data consistent with no oscillations, p=0.52

 10^{-1} sin²(2 θ_{ee})

Neutrino-4 best fit point excluded at 3.30 (but not the whole preferred region)

Large fraction of v parameters preferred by BEST was excluded

Solid (No results so far because of background)

Combined fit of SBL experiments

Fit with NEOS/Daya Bay -3.1σ Fit with NEOS/RENO -2.6σ Weak indication of Sterile neutrino

But fit assumes validity of Wilks theorem -> overestimation of significance

New experiments are needed to clarify the situation. Upgraded DANSS, Neutrino-4, and PROSPECT will give answer in few years ²⁶

Conclusions

- LSND and MiniBooNE anomalies are disfavored by MicroBooNE
- v_s explanation of LEE is still possible but contradicts disapp. experiments
- SBNP and JSNS² will clarify the situation
- -GA is in serious tension with many experiments but agrees with Neutrino-4 -Many ideas of possible conventional or BSM explanation but not convincing
- v_s explanation of GA is still marginally possible
- BEST with ⁶⁵Zn source smoking gun test for many explanations
 - RAA is probably explained by smaller ²³⁵U contribution preferred by new experiments (with exception of DANSS) and new Reactor flux models
 - Spectral analysis still indicates v_s with a small sin^22 θ_{ee} at ~3 σ
 - Neutrino-4 claim of $v_{\rm s}$ observation is in tension with many results but not excluded
 - Upgraded VSBL reactor experiments will clarify the situation.

Experimental evidence for v_s is fading away