

Long Baseline Neutrino Oscillation Results (T2K and NOvA)

Son Cao (T2K collaboration) IFIRSE, ICISE

Based on recent T2K works arXiv:2303.03222, arXiv:2305.09916 and NOvA works PRD 106, 032004 (2022)

2023 August 10, 30th Anniversary of Rencontres du Vietnam – Windows on the Universe

Ref. J. Kopp, Y. Wong, A. Ishihara's talks

Neutrino—the most abundant massive particle—plays essential roles in the sensitivity, intensity, and energy frontiers

Adapted "The Growing Excitement of Neutrino Physics " by APS

- ★ 1930: On-paper appearance as "desperate" remedy by W. Pauli
- \star 1956: Anti-v_e first experimentally discovered by Reines & Cowan
- \star 1962: v_{μ} existence confirmed by Lederman *et al*
- 1986: Existence of v_{τ} was established \star
- \star 1998: Atmospheric v oscillations discovered by Super-K
- \star 2001: Solar v oscillations detected by SNO (KamLAND 2002)
- ★ 2011: $v_{\mu} \rightarrow v_{\tau}$ transitions observed by OPERA
- ★ 2011-13: $v_{\mu} \rightarrow v_{e}$ observed by T2K and anti- $v_{e} \rightarrow anti-v_{e}$ by Daya Bay
- \star 2015: Nobel prize for v oscillations, Breakthrough prize (2016)
- ★ 2018: T2K hints on leptonic CP violation

1930	~25 vears	1956	1962	1964
Pauli predicts the Neutrino	Fermi's theory of weak interactions	Reines & Cowan discover (anti)neutrino	muon neutrinos discovery	Solar neutrino anomaly

More details: https://neutrino-history.in2p3.fr/neutrinos-milestones-and-historical-events/

T2K hints on leptonic CP violation IceCUBE observes extragalactic v Nobel prize & Breakthrough prize for v oscillation T2K observe v_e appeared from v_{μ} **Daya Bay observe anti-***v***e disappeared** K2K confirm atmospheric v oscillation KamLAND confirms solar v oscillation Nobel prize for v astrophysics SNO observe solar v oscillation to active flavor Super-K confirms solar v deficit and images the sun Super-K observes v oscillation **Nobel Prize for** *v* **discovery** SAGE/<u>Gallex</u> observe the solar v deficit LEP shows 3 active flavors Kamioka-II confirms solar deficit Nobel Prize for neutrino beam & v_{μ} discovery

Supernova neutrino observed

1980

1998

One of the most striking discoveries in the last 25 years is that neutrinos have mass and the leptons are mixed

Nobelprize.org

Ref. R.Saakyan's talk

Ref. M. Danilov's talk

- Neutrino mass ordering
- CP-violation in the lepton sector
- How close is leptonic mixing angle θ_{23} to $\pi/4$?
- Absolute mass of neutrinos
- Origin of neutrino mass: Dirac vs Majorana?
- Sterile neutrino?

Known unknowns (at observable level) in neutrino physics

The first three unknowns can be addressed directly with neutrino oscillation experiments

Neutrino oscillations in short

Detector

- Neutrino oscillations require the existence of a **neutrino mass spectrum**, i.e mass eigenstate v_i with definite mass m_i (where *i* is 1, 2, 3^{*} at least)
- It requires flavor eigenstate with definite flavor, v_{α} (where α is e, μ , τ) must be superpositions of the mass eigenstates, a fundamental quantum mechanic phenomenon

*It's still possible that there are more than 3 mass eigenstates **PMNS is shorted for Pontecorvo-Maki-Nakagawa-Sakata

Detector

Neutrino oscillations in short

for anti-neutrino, this changes to (--)

By measuring the oscillation pattern/probability, typically as function of neutrino energy, it is possible to extract all oscillation parameters

$$c_{ij} = \cos \theta_{ij}, \ s_{ij} = \sin \theta_{ij}, \ s_{ij}$$

- O U_{PMNS} is 3x3 unitary matrix parameterized with 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and one irreducible Dirac CP-violation phase (δ_{CP}), similar to CKM matrix of quark mixing
- ^o If neutrino is a Majorana particle, there are two additional CP-violation phases (ρ_1, ρ_2) , which play no role in neutrino oscillations • Oscillation wavelengths are driven by two mass-squared splittings

$$\Delta m_{21}^2 = m_2^2 - m_1^2 \approx 7.5 \times 10^{-3}$$
$$|\Delta m_{31}^2| = |m_3^2 - m_1^2| \approx 2.5 \times 10^{-3}$$

Oscillation parameters

 $-5(eV^2/c^4)$ $-3(eV^2/c^4)$ m **Mass ordering** $m_3 > m_2 > m_1$ or $m_2 > m_1 > m_3$ is unknown

T2

For precise measurement of neutrino oscillations:

- Powerful and well-controlled sources of (anti-)neutrinos
- Big detectors with flavor-tagging and energy-reconstruction capabilities
- ^O Well-modeled $\nu/\bar{\nu}$ interactions with nucleons/nuclei and detector's $\nu/\bar{\nu}$ energy resolution
- Capability to resolve the parameter degeneracies, particularly among $\delta_{CP}, \theta_{13}, \theta_{23}, sign(\Delta m_{31}^2) \rightarrow Motivation for joint analyses$

Three generations of long-baseline accelerator-based neutrino experiments

	T2K	
Proton energy & power	30 GeV / ~500 kW	120 Ge
Peak neutrino energy	0.6 GeV	1
Baseline	295 km	3
Far detector mass	50 kton	1
Detector technique	Water Cherenkov	Segm scin
Run period	2010 - (~2027)	2014

The two exp. with different baseline/energy and detection technique are complementary to study neutrino oscillations

T2K&NOvA experimental specifications

NOvA

 $eV/\sim700 kW$

.8 GeV

810 km

4 kton

ented liquid

tillator bar

 $-(\sim 2026)$

Neutrino beam with accelerator-based exp.

- Proton from accelerator is extracted, guided, and bombarded onto a graphite target (90–100 cm in length)
- ^O Produced hadrons (π , K) are focused by a magnetic horn system
- Positive or negative hadrons can be focused/ defocused by switching the horn polarity to produce mainly ν_{μ} or $\overline{\nu}_{\mu}$ beam respectively
- Both T2K and NOvA far detectors are placed off-axis to receive a narrow-band beam

NuMI beam to NOvA exp.

Highly pure $\nu_{\mu}/\overline{\nu}_{\mu}$ beam with <1% of intrinsic $\nu_{e}/\overline{\nu}_{e}$ with ~6%/~8% uncertainty at the peak for T2K/NOvA before constraints with near detector data. Hadron production is a dominant source of uncertainty

Neutrino-nucleon interaction

 $\times P(\nu_{\alpha} \to \nu_{\beta} | E_{\nu}^{true}, \overrightarrow{o})$

 $N^{\nu_{\beta}}(E_{\nu}^{reco.}, \overrightarrow{o}) = \Phi^{\nu_{\alpha}}_{flux}(E_{\nu}^{true}) \times \sigma^{\nu_{\beta}}_{int.}(E_{\nu}^{true}) \times M_{det.} \times \epsilon^{\nu_{\beta}}_{det.}(E_{\nu}^{true}) \times R_{det.}(E_{\nu}^{true.}, E_{\nu}^{reco.})$

- T2K is dominated by the CCQE interaction and considerable 2p2h and CC resonance
- NOvA has large contribution from CC resonance and DIS at higher energy
- Each experiment utilizes Near Detector to tune and constrain interaction model (and flux) and makes prediction at Far Detector
 - T2K: $\sim 13\% \rightarrow \sim 3\%$ uncertainty 0
 - NOvA: ~ $13\% \rightarrow 3-6\%$ uncertainty 0
- Two exp. use notably different interaction models with independent neutrino event generators as nominal MC

T2K experiment

Both detectors provide excellent capability to identify and classify the ν_{μ} , ν_{e} interactions

T2K&NOvA: Event classification

NOvA experiment

Caveat: NOvA far detector is on surface and suffers from high cosmic ray rate

Muon (anti-)neutrino disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \left(\cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} + \sin^{2}2\theta_{13} \cdot \sin^{2}\theta_{23}\right) \cdot \sin^{2}\theta_{13} \cdot \sin^{2}\theta_{23} \cdot \sin^{2}\theta_{23}$$

Leading-term Next-to-leading

Electron (anti-)neutrino appearance Leading term $P(\nu_{\mu} \to \nu_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}$ $+8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta-s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$ $-8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$ $+4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2}+s_{12}^{2}s_{23}^{2}s_{3}^{2}-2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^{2}\Delta_{21}$ Solar $c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$ $\Delta_{ij} = \Delta m_{ij}^2 \frac{L}{4E}$ CP violating term introduced by replace δ by $-\delta$ for $P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$ interference among three-flavor mixing

Data	(

Data [POT]	T2K	NOvA
Neutrino-mode	1.97E+21	1.36E+21
Anti-neutrino mode	1.63E+21	1.25E+21
Total analyzed data	3.60E+21	2.61E+21
Expectation by the operation end	10.E+21	7.2E+21

collection

• ~ 30% data collected and analyzed

• Neutrino beamline upgrades will allow the two to obtain data considerably faster.

Latest results on leptonic CP violation, neutrino mass ordering, and others

Consider two independent parameter sets driving disappearances of ν_{μ} and $\overline{\nu}_{\mu}$ (e.g. caused by CPT violation or NSI)

No significant difference btw. ν_{μ} and $\overline{\nu}_{\mu}$ disappearance

TZ/K Consistent picture of atmospheric parameters

T2K data: new ν_{μ} disappearance sample

- First use of the multi-ring sample in neutrinomode, dominated by $CC1\pi$
- 30% increase in statistics
- Higher energy and thus less sensitive to oscillation parameters than the single ring sample

Super-Kamiokande IV ner: 2473 hits, 7363

outer: 3 hits, 3 p

Time(ns

TZ

T2K preliminary

T2K data: $\nu_{\mu} \rightarrow \nu_{e}$ appearance channels

- T2K self-measurement of θ_{13} is consistent with the much stringent constraint of this parameter fr. reactor-based exp.
 - T2K then implements the external constraint on θ_{13} to gain a better sensitivity to the other parameter measurements

Signation NovA data: $\nu_{\mu} \rightarrow \nu_{e}$ appearance channels IZK

Posterior Probability Density 0

> NOvA data is also consistent with constraint on θ_{13} from reactor-based experiments

Eur.Phys.J.ST 230 (2021) 24, 4259-4273

Also, there is no significant indication of sterile neutrinos in both T2K and NOvA data. The two data sets are well-described with 3x3 standard PMNS mixing.

Goodness of fit: $\chi^2/DOF = 56.4/66$

Use reactor constraint $\sin^2 \theta_{13} = (2.18 \pm 0.07) \times 10^{-2}$

T2K: CP violation, mass ordering...

- T2K excludes CP conservation ($\delta_{CP} = 0, \pi$) with more than 90% C.L. but less than 2σ C.L. Wide range of δ_{CP} in the inverted ordering is excluded with more than 3σ C.L.
- T2K weakly favors normal mass ordering and higher octant with Bayes factor of 2.8 and 3.0 respectively

- NOvA data is more consistent with the CP-conservation than $\delta_{CP} \sim -\pi/2$ (or $3\pi/2$) values as T2K's indication if neutrino mass ordering is normal
- Both T2K and NOvA indicate $\delta_{CP} \sim -\pi/2$ (or $3\pi/2$) in the inverted ordering option
- NOvA weakly favors normal mass ordering and higher octant

	N. Ordering	I. Orderi
U. Octant	41.7%	20.9
L. Octant	25.8%	11.5
	67.5%	32.5

2	2	2
C)	
-	2	
_	Ş	
<u>a</u>	2	
~	-	`
		,
-		
C	2	
	52	-
	202	-
	2)225	-

-	5	
ά	5	
-	ł	•
	2	
_	2	-
C)
	1)
	222)
	222)
)

$$J_{CP}^{Lepton} = Im[U_{\alpha i}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\beta j}]$$

$$= \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{13} \cos \theta_{13} \sin \theta_{13$$

O Jarlskog invariant characterizes the amplitude of CPV and do not depend on parameterization

$$^{O}J_{CP} \neq 0$$
: CP is violated

- ^O T2K can exclude zero J_{CP} at more than 2σ (or just below 2σ) credible level if a flat prior of δ_{CP} (sin δ_{CP}) is assumed
- ^O With a flat prior of δ_{CP} , NOvA also has majority of probability at $|J_{CP}| \approx 0.03$

(1) Super-K as T2K far detector has been successful in loading Gd (0.03%), ~ 75% neutron capture efficiency

Neutron-capture time w/ atmospheric ν events and wrong-signed background suppression

(3)New near detector, Super-FGD, with ~2 millions 1cm³ scintillation cube and 56k readout channels, and highangle TPC for tracking charged particles with lower energy threshold and close to 4π angular acceptance

Prospects: Coming data with T2K and J-PARC upgrades

(2)J-PARC accelerator upgrade to faster proton delivery $2.48 \text{ s} \rightarrow 1.32 \text{ s}$. Horn operation with 250kA \rightarrow 320kA, effectively 10% statistics increase

Official joint analysis btw. T2K and NOvA formulated and now under review process. Expected benefits:

- Ο particularly for CP violation, mass ordering, and precise mixing angle θ_{23}
- To use full likelihood maps for both experiments
- Ο
- Correlate the systematic uncertainties where appropriate Ο

Complementarity (baseline/energy) to explore wider range of oscillation parameter space,

Study and examine neutrino interaction models currently used and tuned in each experiment

- Common detector \rightarrow strong correlated detector Ο systematics and neutrino interaction models
- Complementarity to explore wider range of parameter space 0
- Enhance the sensitivity to mass ordering and potential break Ο the δ_{CP} -mass ordering degeneracy

Prospects: T2K & Super-K atmospheric joint analysis

From SK collaboration, not official joint T2K-SK

Summary

- CP violation.
- For non-standard physics
 - No significant deviation from the CPT (and Lorentz) conservation
 - No indication of sterile neutrino
- Incoming joint T2K-NOvA analysis; and joint T2K-Super-K analysis

We are getting close to the answers to the remaining unknowns in the *v*Standard Model. Stay tuned!

• T2K provides significant hints on CP violation but NOvA shows dissimilar tendency if mass ordering is normal. If mass ordering is inverted, the two consistently favor maximal

^O Normal mass ordering and higher octant of θ_{23} are weakly preferred for both exp.

• More data is coming and being acquired faster thanks to the beamline upgrade

