Tracing the Ejecta from Cosmic Nucleosynthesis

Proton -> Neutron

linim

16.938, 6.99

Na

potassiu

Rb noidum www.

Roland Diehl

Technical University München and MPE and Origins Cluster emeritus Garching

Contents:

- 1. Nucleosynthesis sources and their Ejecta
- 2. Learning from γ-ray observations large scale star clusters
- 3. Conclusions and Prospects

with work from (a.o.) Martin Krause, Karsten Kretschmer, Moritz Pleintinger, Thomas Siegert, Rasmus Voss, Wei Wang, Christoph Weinberger

2

to

4.0020

CS CS

Ne neon

20.180

18 Ar argon

Figure: ChETEC 2021

The composition of cosmic matter evolves over time

... a coarse picture of cosmic nucleosynthesis.

On-going Enrichments from Nucleosynthesis Sources

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

Cosmic nucleosynthesis sources

 Nuclear fusion reactions power all stars

 Many stars explode as a supernova at the end of their evolution

- Some binary systems including white dwarf stellar remnants explode as a supernova
- Some binary systems including neutron stars eventually merge to form a black hole

How many new nuclei in ejecta??

"Windows to the Universe", 30th Recontres du Vietnam, Quy Norf. 6-12 Aug 2023

Environments for nucleosynthesis ejecta

 ☆ Massive stars and ccSNe
 [∞] typical t_{evolution} ~ 1-100 My
 [∞] molecular-cloud and superbubble environment
 ☆ Supernovae type la
 [∞] typical t_{evolution} ~ 0.x-1 Gy
 [∞] outside star forming regions

☆Compact-binary mergers
^③ typical t_{evolution} ~ 1-x Gy
^③ away from galactic disk

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug $20\overline{2}3$

Modeling stellar feedback (1)

- The ISM plasma is highly complex
 - Iarge reservoir of internal energy (ionization states, coupling to mag field & CRs)
 - ☆ shocks imply non-equilibrium physics,
 i.e. detailed solution of MHD equations
 - microscopic physics is coupled to large dimensions through plasma waves, mag fields, CRs

- ☆ stellar actions (radiation, wind, explosions, rate, location) from other models
- Modeling alternatives:
 - ☆ Implement physical processes in 3D MHD Eulerian grid codes (exact)
 - Employ SPH modelling: spatial modeling replaced by mass modelling (efficient)
 - ☆ Hybrid models: (~exact; ~efficient)
 - SPH plus particles randomly placed and with detailed physics
- Limitations:
 - ☆ 3D MHD is computationally expensive → resolution limited
 - ☆ SPH cannot properly treat shocks and tenous hot phase
- * Hybrid models often use subgrid physics models "Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

Modeling stellar feedback (2)

• Example of a hybrid code: AREPO Key processes of photoionization and kinetic energy injections

Inhomogeneities of chemical enrichments?

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

²⁶Al γ-rays from the Galaxy

Astronomy across the cosmic messengers

Radioactivities from massive stars: ⁶⁰Fe, ²⁶Al

→ Messengers from Massive-Star Interiors!

... complementing neutrinos and asteroseismology!

Processes:

- ☆ Hydrostatic fusion
- ☆ WR wind release
- ☆ Late Shell burning
- ☆ Explosive fusion
- ☆ Explosive release

Diffuse gamma-ray emission from ⁶⁰Fe in the Galaxy

²⁶Al and ⁶⁰Fe analysis with same INTEGRAL dataset (15+ years) and models

²⁶Al γ -rays and the galaxy-wide massive star census

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 20123

Massive-Star Groups: Population Synthesis

Diffuse radioactivity throughout the Galaxy

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

Roland Diehl

Population synthesis: impact of different inputs on groups

variation of explodability (i.e.: not all stars of high mass make a SN!)

contributions from early (i.e. most-massive-stars') SNe eliminated if non-exploding

Population synthesis: impact of different inputs

contributions from early (i.e. most-massive-star) SNe reduced

Diffuse radioactivity throughout the Galaxy

✓ PSYCO modeling: (30000 sample optimisation)
 → best: 4-arm spiral 700 pc, LC06 yields, SN explosions up to 25 M_☉

- ^C SPI observation: → full sky flux (1.84 ±0.03) 10⁻³ ph cm⁻² s⁻¹
- ^C flux from model-predicted ²⁶Al: → (0.5..13) 10⁻⁴ ph cm⁻² s⁻¹ → too low
- Best-fit details (yield, explodability) depend on superbubble modelling (here: sphere only)

Massive Star Groups in our Galaxy: ²⁶Al γ-rays

How massive-star ejecta are spreading...

• ²⁶Al shows apparently higher galactocentric rotation (?)

Kretschmer+(2013)

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

How massive-star ejecta are spread out...

radial velocity [km s⁻¹] 0 001-0007-007-200 Superbubbles extended away from massive-star groups -300 40 20 0 -20 Galactic longitude [deg] **OB** association \bigcirc HI shell Krause & Diehl, ApJ (2014) X-ray bubble Blow-out ²⁶Al ejecta Galactic Galactic centre centre Observer Plane Galactic Galactic rotation rotation Illustration by M. Pleintinger (2020) Observer

"withows to the onlycese , both Necontres on viethand, why whole, ϕ -is may zozo

Superbubbles observations in other galaxies

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

Roland Diehl

Simulations of (inhomogeneous) galactic evolution

\rightarrow ejecta with excess velocities appear naturally within a spiral galaxy

3D SPH simulation: analyze velocities in typical SF regions

Wehmeyer & Kobayashi 2021

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

Stellar Feedback – insights from theory & simulations

- Stellar feedback is main driver of ISM and the baryon cycle
- Superbubbles are major elements / observable consequences

- Typical superbubble sizes extend to kpc
- Next-generation star formation occurs on the SB scale (~300 pc)

Orion-Eridanus: A superbubble blown by stars & supernovae

ISM is driven by stars and supernovae \rightarrow Ejecta commonly in (super-)bubbles

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

Krause+ 2013ff

Roland Dieh

Understanding the Eridanus Superbubble

• X-ray Emission, size, ²⁶Al

"Windows to the Universe", 30th Recontres du Vietnam, Quy Nhon, 6-12 Aug 2023

Stars, structures, & shells

ISM is driven by stars and supernovae

 \rightarrow Use stellar census for estimation of driving energy & nucleosynthesis (²⁶Al)

⁶⁰Fe and ²⁴⁴Pu from nearby nucleosynthesis found on Earth

Knie+ 2004, Fimiani+ 2016, Ludwig+ 2016, Koll+ 2019,

+ lunar material probes; + antarctic snow

Wallner+ 2015, 2016, 2021 B ²⁴⁴Pu τ~80 My Ъ ž 0 ⊼ FeMn Crust-1 ~ 50 E 45 (at cm⁻² FeMn Crust-2 FeMn Crust-3 at incoporation rates ⁶⁰Fe 2 35 3.5 rediment deposition τ~3.8 My 2.5 Crust eMn 10 2 8 9 time period (Ma) peak of radioactivity influx

≈3 & 6-8 My ago!

What are its sources?

How did these traces of nucleosynthesis get here?

⁶⁰Fe on Earth from recent nearby supernovae?

The Sun is (now) located inside a hot cavity (the "Local Bubble") SN explosions within LB \rightarrow ejecta flows reach the Solar System

ke Bubble

ISM dynamics and trajectory of the Sun lead to encounters with SB wall and quenching of the heliosphere from cloud encounters
 → nucleosynthesis ejecta flows can reach the Solar System

Tracing Nucleosynthesis Ejecta - Summary

Cycling of cosmic gas through sources and ISM is a challenge Source afterglows reach aut to ~years (SNe) or few 10,000 y (SNR)
^{CP 26}Al with radioactive lifetime Myrs extends these traces

- ☆ ²⁶Al gamma-ray spectroscopy shows new aspects
 - ^{CF 26}Al preferentially appears in superbubbles
 - \rightarrow massive-star ejecta are rarely due to single WR stars or SNe
 - [©] several massive-star groups are consistent with this view
 - The local cavities around the Sun reflect the Sco-Cen group and its activities
 - ^{CF 60}Fe is a second radio-isotope, and even found on Earth from nearby nucleosynthesis → get a detailed local view
- ☆ Varied messengers complement ISM studies of ejecta
 - Radioactivity provides a unique and different view on cosmic isotopes (via gamma rays, stardust, CRs, sediments)

