Magnetic fields and dust in the massive filament G11.11-0.12 observed by SOFIA/HAWC+

Nguyen Bich Ngoc, PhD student (Vietnam National Space Center)

Collaboration: Vietnam Astrophysics Research Network (VARNet)

VARNet!

RVN@30, ICISE, 2023

Contents 1/ Motivation 2/ B-fields: morphology and strength 3/ Dust physics

Role of filament

Filaments are ubiquitous. Prestellar cores protostars and are observed to be formed along filaments.

=> Filament is an important step in star formation.

Role of B-fields in filament

B-fields play an important role in star formation.

B-fields make matter flows more coherent and allows filaments to survive longer.

Dust polarization

From dust polarization observation, we can study:

- Magnetic fields (morphology and strength)
- **Dust physics** (alignment and disruption, size, shape,...)

IFDC G11.11 -0.12 (Snake filament)

G11 is a filament in the galactic plane Distance: 3.6 kpc from the Earth Length: 30 pc Mass: $10^4~M_{\odot}$

In early phase of star formation with 18 cores along the filament and two highmass protostar candidates (P1, P6) (Henning+2010)

B-field morphology

Dec (J2000)

The first measurement of dust polarization towards the entire G11 filament

Angle difference between the B-fields and the bone

When B-fields run perpendicular to the filament, the filament is accreting materials following the B-fields $(H_2) (cm^{-2})$

B-fields tend to change from parallel to perpendicular with the filament when density increases

Magnetic field strength: Davis, Chandrasekhar & Fermi method

It is based on the assumption that gas turbulent motion is the driving of B-field distortion

Relative importance

Alfvenic Mach number: turbulence vs. B-fields $\mathcal{M}_A = \frac{\sigma_V}{\nu_A} = \frac{\sigma_\theta}{Q}$

Magnetic field strength: Davis, Chandrasekhar & Fermi method

Assume: Depth = width ~ 0.9 pc (Zucker+18) $n(H_2) = N(H_2)/depth$

 $\bar{ heta}$ mean angle of 5x5 box

B-field strength

The strengths vary in the range of 100-600 μ G and are strongest along the filament's bone.

Mass-to-flux ratio

The region is mostly **subcritical**. B-fields are strong enough to resist gravitational collapse.

Alfvenic Mach number

The filament is sub-Alfvenic

B-fields dominate over turbulence

=> the magnetic fields are able to regulate the gas motion

Dust physics

Depolarization effect: B-field tangling

Depolarization effect: Implications for Grain Alignment Theory

Filament profiles

Radial distance

The polarization decreases because of the decrease in grain alignment efficiency toward the high column density and low dust temperature

Enhanced Magnetic Relaxation on RAT Alignment (MRAT)

P(%) > 20%, can be achieved only if grains can be perfectly aligned

- => Combination of the MRAT and RATs.
- => Grains in G11 contain iron clusters

Grain growth

 $a_{\rm align}$: minimum size of aligned grains (Hoang et al. 2021). Dust can be aligned in range of $a_{\rm align}$ to $a_{\rm max}$

Slope of *I* vs *P* ~ 0.8-0.9 < 1

=> grain alignment is not completely lost

Inside filament: $a_{max} > a_{align} = 0.3 \ \mu m > a_{max} (ISM) = 0.25 \ \mu m$

=> Grain growth in the filament

Dec (J2000)

Conclusion

G11 paper

Magnetic field

- B-field morphology is fully mapped along the Snake filament.
- The general B-fields tend to be perpendicular to the filament.
- Maps of B-field strength, mass-flux ratio, Alfvenic mach number of the densest region of G11. B-fields dominate over turbulence and are strong enough to resist gravitational collapse.

Dust physics

- The depolarization can be explained by the decrease in RAT alignment efficiency toward the denser and lower dust temperature regions.
- We find the evidence for grain growth and iron cluster in dust grains.

Thank you very much for your attention!