Supernova-scope for the Direct Search of Supernova Axions

Koichi Hamaguchi (Tokyo U.)

@ Windows on the Universe,

Based on [arXiv:2008.03924] JCAP **11** (2020) 059 Shao-Feng Ge (TDLI), Koichi Hamaguchi (Tokyo), Koichi Ichimura (Tohoku), Koji Ishidoshiro (Tohoku), Yoshiki Kanazawa (Tokyo), Yasuhiro Kishimoto (Tohoku), Natsumi Nagata (Tokyo), Jiaming Zheng (TDLI).

X-ray detector

30th Anniversary of the Rencontres du Vietnam, ICISE, Quy Nhon, Aug. 10, 2023.

Supernova 1987A (February 23, 1987)

https://images.datacentral.org.au/malin/AAT/050a

What if the next nearby SN occurs? We could learn a lot about neutrino, supernova, and maybe...

http://www-sk.icrr.u-tokyo.ac.jp/sk/physics/supernova-e.html

Toady's Main message

- If a nearby (< a few 100 pc) supernova (SN) occurs, a huge number of axions (in addition to neutrinos) may arrive at the Earth.
- Those SN axions may be detected by an axion Supernova-scope with the help of pre-SN neutrino alert.

Similar idea in: G.G.Raffelt, J.Redondo, N.Viaux Maira (2011), I.G.Irastorza, J.Redondo (2018).

 SN-scopes based on the next-generation axion helioscopes (such as IAXO) have potential to detect O(1-100) SN axions.

[arXiv:2008.03924] JCAP **11** (2020) 059.

SN

X-ray detector

axion

X-ray optics

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng.

Plan

- Motivation: axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number
- Summary

Plan

Motivation: axion

- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number
- Summary

The most serious fine-tuning problem in the Standard Model of particle physics.

(It cannot be explained even by the anthropic discussion.)

Talks by Andrew Long, Ngan Nguyen, Ranjan Laha, Boris Ivanov (all today)

$$n_{q}\bar{q} \,\theta_{q} \,i\gamma_{5}q$$

$$\text{Why} \\ \bar{\theta} = \theta + \sum_{q} \theta_{q} \\ q \end{pmatrix}$$
on EDM): $|\bar{\theta}| \leq 10^{-10}$

$$\left(\bar{\theta} = \theta + \sum_{q} \theta_{q}\right)$$

• Axio

$$\begin{split} & \sum_{\mathrm{SM}} \ni \frac{\alpha_s}{8\pi} \frac{\partial}{\partial r_{\mu\nu}} \widetilde{G}^{a\mu\nu} - \sum_q m_q \bar{q} \ \theta_q \ i\gamma_5 q \\ & \text{Experimental constraint (neutron EDM):} \quad |\bar{\theta}| \lesssim 10^{-10} \qquad (\bar{\theta} = \theta + \sum_q \theta_q) \\ & \text{m.can be solved by the "Peccei-Quinn mechanism", [Peccei, Quinn, 77]} \\ & \text{predicting a very light particle, Axion. [Weinberg, 78, wilczek, 78]} \\ & \text{axion} \ni \frac{\alpha_s}{8\pi} \frac{a}{f_q} G_{\mu\nu}^a \widetilde{G}^{a\mu\nu} \\ & \mathcal{S}_{\mathrm{axion}} \stackrel{\text{derive}}{=} \frac{\alpha_s}{8\pi} \frac{a}{f_q} G_{\mu\nu}^{a\mu\nu} \widetilde{G}^{a\mu\nu} + \frac{1}{4} \frac{C_{a\gamma\gamma}}{f_q} a \frac{F_{\mu\nu} \widetilde{F}^{\mu\nu}}{photon} + \sum_{f=quarks.} \frac{1}{2} \frac{C_f}{f_q} \overline{f} \gamma^{\mu} \gamma_5 f \partial_{\mu} a \\ & f \\ & e_{\alpha\gamma\gamma} = \frac{a}{2\pi} \left(\frac{E}{N} - \frac{2}{3} \frac{4m_d + m_u}{m_u + m_d} \right), \quad \begin{cases} C_q = 0 \ (\mathrm{KSVZ}) \\ C_{u,c,i} = \cos^2 \beta/3, \ C_{d,s,b} = \sin^2 \beta/3 \ (\mathrm{DFSZ}) \end{cases} \end{split}$$

Talks by Andrew Long, Ngan Nguyen, Ranjan Laha, Boris Ivanov (all today)

Talks by Andrew Long, Ngan Nguyen, Ranjan Laha, Boris Ivanov (all today)

Motivation: Axion QCD Constraints

- SN1987A: $f_a \gtrsim O(10^8)$ GeV (KSVZ) [P.Carenza et.al., 2019 + others]
- Neutron Star Cooling $f_a \gtrsim \mathcal{O}(10^8)$ GeV [KH, N.Nagata, K.Yanagi, J.Zheng, 2018 + others]

But there are various uncertainties.

There are also hints for stellar cooling.

produced from the stellar objects.

Talks by Andrew Long, Ngan Nguyen, Ranjan Laha, Boris Ivanov (all today)

[e.g., N.Bar, K.Blum, G.D'amico 2019]

- preferred values: $f_a \sim 8 \times 10^7$ GeV, $\tan \beta \sim 0.28$ (DFSZ). (SN1987A not included). [M. M. Giannotti, I. G. Irastorza, J. Redondo, A. Ringwald, and K. Saikawa 2017]
- It would be nice if there is more direct way of probing axions

Plan

- Motivation: axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

• Summary

Nearby SN progenitor candidates

Antares (~ 170 pc)

https://www.civillink.net/esozai/

Betelgeuse $(\sim 200 \text{ pc})$

Nearby SN progenitor candidates

pc)	Mass (M_{\odot})	RA (J2000)	Dec $(J2000)$
	11.43 ± 1.15 [79]	13:25:11.58	-11:09:40.8
	$20.0 \ [80]$	16:37:09.54	-10:34:01.5
	10.1 ± 1.0 [81]	14:41:55.76	$-47{:}23{:}17.5$
	11 - 14.3 [82]	16:29:24.46	-26:25:55.2
	11.7(8) [81]	21:44:11.16	+09:52:30.0
]	$11.6^{+5.0}_{-3.9}$ [84]	05:55:10.31	$+07{:}24{:}25.4$

Plan

- Motivation: axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

• Summary

nearby SN

nearby SN

nearby SN

http://www-sk.icrr.u-tokyo.ac.jp/sk/physics/supernova-e.html

•SN1987A

neutrino burst within $\Delta t \simeq 10$ sec.

Future: various neutrino detectors

Supernova-scope If the

If the axion exists,...

$$\mathscr{L}_{a\gamma\gamma} = \frac{1}{4} \frac{C_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

$$a \longrightarrow \gamma$$

$$B$$

$$B$$

$$Magnet coll$$

• Essentially the same as the Axion Helioscopes for the solar axion.

Axion Helioscopes

	(Proposed) site	$B(\mathbf{T})$	L (m)	$A (m^2)$
	CERN	9	9.3	$2.9 imes 10^{-3}$
	DESY	~ 2	10	0.77
[]	DESY	~ 2.5	20	2.3
	DESY	~ 3.5	22	3.9
	INR	3.5	12	0.28

Fig. from IAXO homepage

- Essentially the same as the Axion Helioscopes for the solar axion.
- But the axion energy is different.

X-ray focusing optics doesn't work for γ -rays. ×

X

X-ray detector cannot measure the γ -ray energy, and hence the background rejection is difficult (see backup slide).

solar axion

SN axion

Idea: install a γ -ray detector at the opposite end to the X-ray detector. S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. Magnet coil axion \sim

γ -ray detector

[arXiv:2008.03924] JCAP **11** (2020) 059.

Normal operation time: It works as an axion helioscope.

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

Idea: install a γ -ray detector at the opposite end to the X-ray detector.

Idea: install a γ -ray detector at the opposite end to the X-ray detector. Normal operation time: It works as an axion helioscope.

1102 19-

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

1012818P NE1-2

noixe "

Normal operation time: It works as an axion helioscope.

When a Supernova occurs,....

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

Idea: install a γ -ray detector at the opposite end to the X-ray detector.

1012818P NET-P

NOIXE

Idea: install a γ -ray detector at the opposite end to the X-ray detector. Normal operation time: It works as an axion helioscope.

When a Supernova occurs,....

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

X-ray optics

Supernova-scope

Idea: install a γ -ray detector at the opposite end to the X-ray detector. Normal operation time: It works as an axion helioscope.

When a Supernova occurs,....

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

Axion Supernova-scope

Plan

- Motivation: axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

• Summary

The SN-scope has to be pointed to the exploding SN. But SN-axions come within $\Delta t \sim 10$ sec. (cf. neutrino burst)

How do we know the timing of the SN in advance?

Figure from K.Ishidoshiro's talk in 2019. https://www.lowbg.org/ugnd/workshop/sympo_all/201903_Sendai/

For a review of pre-SN neutrinos, see, e.g., C.Kato, K.Ishidoshiro, T.Yoshida [2006.02519].

Time

Figure from K.Ishidoshiro's talk in 2019. https://www.lowbg.org/ugnd/workshop/sympo_all/201903_Sendai/

For a review of pre-SN neutrinos, see, e.g., C.Kato, K.Ishidoshiro, T.Yoshida [2006.02519].

The cumulative numbers of expected pre-SN ν events for Fe-Core progenitor, d = 200 pc.C. Kato et.al., [1506.02358].

cf. Talk by Sindhujha Kumaran (Tuesday)

P. Antonioli et.al., [astro-ph/0406214]. SNEWS collaboration [2011.00035]

- The pre-SN neutrinos can be detected (warning alert triggered) O(hours)-O(days) prior to the SN explosion (d < a few 100 pc).

 - \rightarrow We discard them.

* SN progenitors with $M < 10 M_{\odot}$ \rightarrow Pre-SN ν flux is too small to be detected even for d < 200 pc. C. Kato et.al., [1506.02358].

- The pre-SN neutrinos can be detected (warning alert triggered) O(hours)-O(days) prior to the SN explosion (d < a few 100 pc).
- It is in principle possible to estimate the location of the SN candidate on the sky.

t = -1.0 hour

JUNO (68% C.L.) JUNO + Li (68% C.L.) $\bar{\nu}_e + p \rightarrow e^+ + n$ 330 300 for Betelgeuse, t = -1.0 hour. M.Mukhopadhyay et.al., [2004.02045]

Once a pre-SN neutrino alert is received,

Once a pre-SN neutrino alert is received,

Once a pre-SN neutrino alert is received,

Plan

- Motivation: axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

• Summary

Fig. from IAXO homepage

$-\theta_{\max} \le \theta \le + \theta_{\max}$

maximum elevation:

 25° (IAXO) Η 20° (TASTE) max

a

but if you are unlucky,...

Earth's rotation (24 hours)

Observational time fraction > 50% for all the progenitors except α Lupi.

The time fraction can be increased by

- increasing the maximum elevation $\theta_{\rm max}$ and/or

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

two SN-scopes at different observation points (e.g., Hamburg and Tokyo)

Plan

- Motivation: axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction

Event number

• Summary

-72-

Production

For the axion luminosity, we follow [P.Carenza et.al., 1906.11844], which includes various corrections to the one-pion exchange approximation. At the post-bounce time 1sec,

Thus, the total number of axions from SN is

$$N_a^{\rm SN} = \dot{N}_a \Delta t = \frac{L_a}{\langle E_a \rangle} \Delta t \simeq 3 \times 10^{57} \left(\frac{3 \times 10^8 \text{ GeV}}{f_a}\right)^2 \left(\frac{C_{N,\text{eff}}}{0.37}\right)^2 \left(\frac{\Delta t}{10 \text{ s}}\right) \left(\frac{T}{30 \text{ MeV}}\right)^2 \left(\frac{10 \text{ s}}{10 \text{ s}}\right) \left(\frac{T}{10 \text{ s}}\right)^2 \left(\frac{10 \text{ s}}{10 \text{ s}}\right)^2 \left(\frac{10 \text{ s}}{$$

cf. more recent studies, P.Carenza+, 2010.02943, 2108.13726]

$$\frac{A}{4\pi d^2} = 8$$

Experiment	(Propos
CAST [34–39]	CERN
BabyIAXO $[41]$	DESY
IAXO baseline $[40, 41]$	DESY
IAXO $+$ [41]	DESY
TASTE $[42]$	INR

$$N_{\rm event} = N_a^{\rm SN}$$

Detection

$$P = \frac{1}{4} \left(\frac{C_{a\gamma\gamma}}{f_a} BL \right)^2 \left(\frac{\sin(qL/2)}{qL/2} \right)^2$$

$$= 3.6 \times 10^{-20} \left(\frac{C_{a\gamma\gamma}}{\alpha/\pi} \right)^2 \left(\frac{3 \times 10^8 \text{ GeV}}{f_a} \right)^2$$
where $q = m_a^2/2E_a$.

Experiment	(Propos
CAST [34–39]	CERN
BabyIAXO $[41]$	DESY
IAXO baseline $[40, 41]$	DESY
IAXO $+$ [41]	DESY
TASTE $[42]$	INR

After all,...

$$N_{\text{event}} \simeq 1.0 \times \underbrace{\left(\frac{3 \times 10^8 \text{ GeV}}{f_a}\right)^4 \left(\frac{C_{N,\text{eff}}}{0.37}\right)^2 \left(\frac{C_{a\gamma\gamma}}{\alpha/\pi}\right)^2}_{\text{axion model}} \times \underbrace{\left(\frac{150 \text{ pc}}{d}\right)^2 \left(\frac{\Delta t}{10 \text{ s}}\right) \left(\frac{T}{30 \text{ MeV}}\right)^{5/2}}_{\text{SN}}}_{\text{SN}}$$

$$\times \underbrace{\left(\frac{A}{2.3 \text{ m}^2}\right) \left(\frac{B}{2.5 \text{ T}}\right)^2 \left(\frac{L}{20 \text{ m}}\right)^2}_{\text{detector}} \times \underbrace{\left(\frac{\sin\left(qL/2\right)}{qL/2}\right)^2}_{\text{detector}}.$$

* We expect roughly O(1)~10 uncertainty, especially from SN part.

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

$N_{\rm event} = 1 \sim 100$ for Betelgeuse ($d \simeq 220$ pc) and Spica ($d \simeq 77$ pc)

 Axion coupling: KSVZ model $(C_{N,\text{eff}} = 0.37 \text{ and } C_{\alpha\gamma\gamma} = \alpha/\pi)$

• Axion mass: free parameter (ALPs-like)

- Better sensitivity than helioscopes for large mass, because of higher axion energy $(E_a^{\rm SN} \sim 70 {\rm MeV} \gg E_a^{\rm sun} \sim {\rm a few keV}).$
- •For small mass region, both solar axion and SN-axion may be discovered.

Event number vs. stellar constraints

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

• $\mathcal{O}(10)$ events for Spica.

Summary

- If a nearby (< a few 100 pc) supernova (SN) occurs, a huge number of axions (in addition to neutrinos) may arrive at the Earth.
- Those SN axions may be detected by an axion Supernova-scope with the help of pre-SN neutrino alert.

Similar idea in: G.G.Raffelt, J.Redondo, N.Viaux Maira (2011), I.G.Irastorza, J.Redondo (2018).

 SN-scopes based on the next-generation CAST axion helioscopes (such as IAXO) have potential to detect O(1-100) SN axions. [arXiv:2008.03924] JCAP 11 (2020) 059.

A nearby SN is so rare —— it would be a once in a lifetime opportunity for directly detecting SN axions!

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng.

