The dynamical impact of Cosmicray feedback on galaxy evolution

Philipp Girichidis Institute for theoretical astrophysics (ITA) University of Heidelberg, Germany

Christoph Pfrommer, Maria Werhahn, Tim-Eric Rathjen, Daniel Seifried, Stefanie Walch, Thorsten Naab, Richard Wünsch, Ralf Klessen, Michal Hanasz,

Windows on the Universe 2023 ICISE Quy Nhon, Vietnam August 10, 2023

Low stellar masses in galaxies

stellar mass to halo mass ratio (Moster et al. 2010)

How do galaxies lose their mass?

Motivation for Cosmic Rays

strong outflows in all phases

Thermal energy cools too fast

classical stellar feedback too weak (SNe, winds, radiation)

- CRs: mainly high-energy protons
- accelerated in strong shocks: supernova remnants
- inefficient cooling (compared to thermal gas)
 ⇒ long lived
- in galaxy: $E_{\rm cr} \sim E_{\rm kin} \sim E_{\rm therm} \sim E_{\rm mag}$
- transport
 - advection with gas
 - diffusion relative to gas
 - back-reaction onto B & gas

reviews: Grenier, Black, Strong 2015 Zweibel 2013, 2017 Ruszkowski & Pfrommer 2023

- CRs: mainly high-energy protons
- accelerated in strong shocks: supernova remnants
- inefficient cooling (compared to thermal gas)
 ⇒ long lived
- in galaxy: $E_{\rm cr} \sim E_{\rm kin} \sim E_{\rm therm} \sim E_{\rm mag}$
- transport
 - advection with gas
 - diffusion relative to gas
 - back-reaction onto B & gas

perturbed field CR \vec{B} atoms

reviews: Grenier, Black, Strong 2015 Zweibel 2013, 2017 Ruszkowski & Pfrommer 2023

- CRs: mainly high-energy protons
- accelerated in strong shocks: supernova remnants
- inefficient cooling (compared to thermal gas)
 ⇒ long lived
- in galaxy: $E_{\rm cr} \sim E_{\rm kin} \sim E_{\rm therm} \sim E_{\rm mag}$
- transport
 - advection with gas
 - diffusion relative to gas
 - back-reaction onto B & gas

Grenier, Black, Strong 2015 Zweibel 2013, 2017 Ruszkowski & Pfrommer 2023 strong field CR \vec{B} atoms

reviews:

- CRs: mainly high-energy protons
- accelerated in strong shocks: supernova remnants
- inefficient cooling (compared to thermal gas)
 ⇒ long lived
- in galaxy: $E_{\rm cr} \sim E_{\rm kin} \sim E_{\rm therm} \sim E_{\rm mag}$
- transport
 - advection with gas
 - diffusion relative to gas
 - back-reaction onto B & gas

reviews: Grenier, Black, Strong 2015 Zweibel 2013, 2017 Ruszkowski & Pfrommer 2023

Merge CR physics and galaxy astro

CR/particle physics

cosmology

image credit: A. Pettitt

CRs in a grey approximation

- total energy $e = \int_{0}^{\infty} 4\pi p^{2} T(p) f(p) dp$
- dominated by GeV protons
- effective cooling
- effective diffusive transport (at median energy): $D_{xx} \sim 10^{28} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$
- $P_{\rm CR} = (\gamma_{\rm CR} 1)e_{\rm CR}$
- $\gamma_{\rm CR} = 4/3$

CRs in numerical simulations

Hanasz+ 2003, Girichidis+16,18, Simpson+ 2016, Dubois+ 2016, Farber+ 2018, Armillotta+18,21, Commercon+2019, Butsky+2020, Rathjen+ 2021,2022 Booth+ 2013, Ruszkowski+ 2017a, Pakmor+2016, Pfrommer+2017, Jacob+ 2018, Dashyan+ 2020, Semenov+ 2021, Girichidis+ 2022, Thomas+2022,2023, Peschken+ 2023

Jubelgas+ 2008, Salem+ 2014, Chan+ 2018, Hopkins+ 2020/2021, Buck+2020, Ji+2021

CRs in ISM simulations

Girichidis et al. 2016a, 2018a

ISM evolution without CRs (only thermal)

Girichidis et al. 2018a, based on SILCC setup (Walch+ 2015, Girichidis+2016)

ISM evolution including CRs (+ thermal)

Girichidis et al. 2018a, based on SILCC setup (Walch+ 2015, Girichidis+2016)

MHD, anisotropic diffusion, isothermal Hanasz et al. (2013)

• isolated galaxy, isothermal gas, only CR injection with supernovae

CRs alone are able to drive winds!

Isotropic vs. anisotropic diffusion Pakmor et al. (2016) isotropic diffusion

- isolated cooling halo
- simplified model for interstellar medium
- compare
 - isotropic diffusion
 - anisotropic diffusion along field lines
- impact on B-field strength enhance Parker loops

Anisotropic diffusion is important!

More accurate coupling CR ⇔ gas+B

- total CR energy high, $E_{\rm cr} \sim E_{\rm mag}$
- CRs: back-reaction onto B-field \Rightarrow no simple diffusion (energy-conserving) \Rightarrow complex transport (E-transfer $E_{cr} \leftrightarrow E_{mag}$) (Thomas & Pfrommer 2019,2021,2022, see also Hopkins+ 2021, Shalaby+ 2021,2022)
- bulk of CRs streams with Alfvén speed, Alfvén heating (e.g. Wiener+ 2013)

Halo mass dependence

Jacob+ 2018, Girichidis+ 2023

CRs in numerical simulations

Hanasz+ 2003, Girichidis+16,18, Simpson+ 2016, Dubois+ 2016, Farber+ 2018, Armillotta+18,21, Commercon+2019, Butsky+2020, Rathjen+ 2021,2022 Booth+ 2013, Ruszkowski+ 2017a, Pakmor+2016, Pfrommer+2017, Jacob+ 2018, Dashyan+ 2020, Semenov+ 2021, Girichidis+ 2022, Thomas+2022,2023, Peschken+ 2023

Jubelgas+ 2008, Salem+ 2014, Chan+ 2018, Hopkins+ 2020/2021, Buck+2020, Ji+2021

CRs are dynamically important! Details in transport etc. matter!

Extension to spectral code

just total energy is not enough

Galaxy setup v temperature and CR cc

- isolated halo, rotating gas cloud
- Arepo (Springel '10, Weinberger+ '19)
- CRs (Pakmor+'16, Pfrommer+'17)
- spectral CRs (Girichidis+ '20)
- CRs: 10% of SN energy
- high-E CRs escape faster
- larger region of cold CGM impact on gal. fountain
- larger region with CR dominated pressure

Connection to Gamma-ray obs.

• gamma rays differ: steady state vs. full spectrum (Werhahn+ 2021abc, 2022)

assuming steady state spectra using spectrally resolved simulations

model 'steady on spec', M3e11-spec

Connection to Gamma-ray obs.

• gamma rays differ: steady state vs. full spectrum (Werhahn+ 2021abc, 2022)

"true" spectra of the spectrally resolved simulations

Gamma rays II

comp. to observations

• spectral model: better fit to spectra and SFR- γ luminosity

Beyond CR protons

- include CR electrons as tracer particles
- compute electron losses spectrally resolved (Winner+ 2019,2020)
- compute secondary electrons
- compute synchrotron radiation self-consistently

Summary and Conclusions

- cosmic rays are dynamically important
 - \rightarrow thicken the disk
 - \rightarrow drive smooth and warm outflows
 - \rightarrow at mass loading factors of order unity
- spectrally resolved CRs
 - \rightarrow change the temperature of the circum-galactic medium
 - \rightarrow alter the onset of outflows
 - \rightarrow provide accurate link to observations
 - \rightarrow via gamma rays (spectral models: better fit)
 - \rightarrow via radio synchrotron (electrons) (work in progress)