

The Near Detector Liquid Argon (ND-LAr) 2×2 prototype of the Deep Underground Neutrino Experiment (DUNE)

Sindhujha Kumaran, University of California Irvine for the DUNE collaboration

Rencontres du Vietnam, 30th anniversary, Aug 6-12, 2023

The DUNE experiment: overview

- The Deep Underground Neutrino Experiment (DUNE) is designed to study neutrino oscillations
- Main oscillation physics goals:
 - · Determination of neutrino mass ordering
 - Search for CP violation in the leptonic sector
 - Precision measurement of Δm_{32}^2 , δ_{CP} , $\sin^2\theta_{23}$, $\sin^2\theta_{13}$

2

The DUNE Near Detector (ND) complex

PRISM: system for moving ND-LAr + muon tracker

Traditional Liquid Argon Time Projection Chamber

Timing information from scintillation light collected by light detection systems

ProtoDUNE LArTPC events B. Abi et al 2020 JINST 15 P12004

- Ionization electrons \rightarrow drifted towards segmented wire planes
- Excellent spatial and calorimetric resolution
- 3D reconstruction by combining 2D views ۲

The ND-LAr TPC: a modular TPC

One simulated beam spill in ND-LAr

- Drift time (300 $\mu s) > spill width (10 <math display="inline">\mu s)$
- Event rate at ND: ~ 50 interactions per spill with a 1.2 MW beam
- 130 t of active Liquid Ar (same detector material as the FD)
- 35 modules in a 7×5 array. Each module: 1×1×3 m³
- 2 TPCs in each module
 - $\cdot~$ 50 cm–drift TPC volumes
 - · ~30% optical detector coverage

The ND-LAr TPC: a modular TPC

Prototype module: $0.7 \times 0.7 \times 1.4 \text{ m}^3$

- Pixelated charge readout system and modularized design to handle pile-up
- High performance, custom-made light readout system
- Prompt light will be well-localized
- Charge-light matching to further tackle pile-up
- Potential failures are isolated
- Reduced HV requirements:
 - $\cdot\,$ Lower drift distance (~50 cm) means lower voltage
 - E-field non-uniformities not as important
- Inactive volume: $\sim 5 \text{ cm}$ between active regions

The ND-LAr TPC: pixelated charge readout system

front contains chargesensitive pixels that face the cathode

back contains an array of custom-made LArPix ASICs D.A. Dwyer et al. JINST 13 P10007 (2018)

LArPix pixelated anode

C-loaded Kapton field cage

Cathode

LCM tile ArCLight tile

- Unambiguous true 3D tracking of particles crossing the LarTPC
 - Each pixel tile is self-triggering \rightarrow always active
 - Pixel readout in cryo via LArPix-ASIC
 - Low power amplifiers and digitizers \rightarrow low stored energy and power dissipation (less than 100 μ W/ pixel) \rightarrow keeps heat out of Ar 7

The ND-LAr TPC: light readout system

Light Collection Module (LCM)

ArC light tiles

• Two novel dielectric light detection techniques:

LCM + ArCLight tiles

- Alternated in the detector
- SiPM-based detectors
- UV Ar scintillation light \rightarrow blue light using Tetraphenyl butadiene (TBP) as a wavelength shifter \rightarrow re-emitted as green
- Complementarity between two systems:
 - · ArCLight tiles \rightarrow better position sensitivity
 - $LCM \rightarrow better$ detection efficiency

•

8

ND-LAr $2 \times 2 + MINERvA$

DUNE

- ND-LAr prototype 2×2 array of modules + repurposed MINERvA detector trackers
- Placed together in the NuMI beam at Fermilab
- Goals:
 - Demonstration of a modular LArTPC with a muon tracker in a high intensity neutrino beam
 - Development and testing of end-toend infrastructure for DUNE
 - Physics analysis at DUNE energy scale

- 2.4 t active mass
- 2×2 array of modules
- Each module: 0.7×0.7×1.4 m³
- Smaller but identical to ND-LAr
- Each module assembled and tested individually at University of Bern with millions of cosmic rays
- Smooth operation + validation of ND-LAr requirements

Physics performance highlights of module-0

MINERvA as a muon tagger

- MINERvA (Main Injector Neutrino ExpeRiment to study v-A interactions)
- Repurposed to act as muon taggers for ND-LAr 2×2
- 12 upstream tracker modules \rightarrow tag rock muons
- 32 downstream modules \rightarrow 20 trackers + ECAL and 12 HCAL
 - $\cdot\,$ to separate μ/π and analyze events not contained inside $2{\times}2$

ND-LAr 2×2 + MINERvA: prospects

- 2×2 will record antineutrino beam data from NuMI in fall 2023
- Energy region \rightarrow high energy region of DUNE
- Significant kaon and pion production
- Possibilities: Measurement of neutrino crosssections in Ar, neutrino interaction studies, searches for BSM physics, and demonstration of detector performance among others

ND-LAr 2×2 + MINERvA: status

- DUNE is a next-generation long-baseline neutrino experiment with discovery potential for neutrino mass ordering and leptonic CP violation
- The liquid Ar near detector (ND-LAr) is crucial as it will precisely characterize the outgoing neutrino beam
- A modularized and pixelated LArTPC is necessary to handle the high event rate
- The design of ND-LAr will be tested in a high-intensity neutrino beam using a 2×2 array of modules along with muon tracker planes from the MINERvA detector
- Installation of ND-LAr 2×2 + MINERvA at Fermilab in progress and will record antineutrino beam data from NuMI in fall 2023

• This will be the first DUNE prototype that will detect neutrinos!