

Alternative Design for Large-Scale Liquid Scintillator Detectors

<u>Iwan Morton-Blake</u>^a , Steven Biller^b ^aTsung-Dao Lee Institute / Shanghai Jiao Tong University <u>^bUniversity of Oxf</u>ord

Outline

MeV-scale neutrino physics

Fig. from [1]

Outline

MeV-scale neutrino physics

Outline

MeV-scale neutrino physics

Fig. from [1]

Liquid scintillator detector design

Going larger : An alternative design?

MeV-scale Neutrino Physics

First neutrino measurement! Reines & Cowan (1956)

Liquid Scintillator

PMTs

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Reactors

Detector

Daya Bay (2001) ← Liquid Scintillator 8x20 tons

KamLAND (2002) Liq. Scint. 1 kiloton

World-leading in θ_{13}

<u>JUNO (Upcoming)</u> Liq. Scint. 20 kilotons

<u>Solar</u>

Homestake Experiment R. Davis & J. Bahcall (1968)

First solar v measurement!

Reactors Detector

Example : Search for $0\nu\beta\beta$

Observation of $0\nu\beta\beta$ \rightarrow Neutrinos are Majorana particles

Black Box Theorem: Phys. Rev. D 25, 2951 Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Example : Search for Ονββ

Ideal detector has: Large mass of ββ-decay isotope

Observation of $0\nu\beta\beta$ \rightarrow Neutrinos are Majorana particles

Black Box Theorem: Phys. Rev. D 25, 2951 Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Example : Search for $0\nu\beta\beta$

Ideal detector has: Large mass of ββ-decay isotope

 \succ Low Backgrounds \rightarrow Rare event search

Observation of $0\nu\beta\beta$ \rightarrow Neutrinos are Majorana particles

Black Box Theorem: Phys. Rev. D 25, 2951 Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Example : Search for Ονββ

Ideal detector has: Large mass of ββ-decay isotope

 \succ Low Backgrounds \rightarrow Rare event search

 \succ Fine Energy Resolution \rightarrow lower BGs

Observation of $0\nu\beta\beta$ \rightarrow Neutrinos are Majorana particles

Example : Search for $0\nu\beta\beta$

<u>KamLAND-Zen</u> Liq. Scint. 1 kt

Liquid Scintillator Detectors Getting larger and larger...

Daya Bay 8 x 20 tonnes

Borexino 300 t

SNO+ 800 t

KamLAND 1000 t

JUNO 20,000 t

Liquid Scintillator Detectors Getting larger and larger...

Common to all:

<u>Huge</u> & <u>transparent</u> barrier containing the scintillator

KamLAND ~1000 t

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Optical

photons

KamLAND ~1000 t

JUNO 20 kt

Increasing size : JUNO

• 1 kt \rightarrow 20kT, cannot simply scale up!

Higher stresses/tensions:

- Need thicker acrylic segments
- Need stainless steel support structure
 - Possible extra backgrounds
 - Possible complicated reflections
- Cost of creating large spherical underground cavity

Figs from [5]

An Alternative Design?

Float liquid scintillator on top of a buffer liquidNo transparent vessel/barriers required

Phys. Rev. D 105, 072003

Float liquid scintillator on top of a buffer liquidNo transparent vessel/barriers required

Phys. Rev. D 105, 072003

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Float liquid scintillator on top of a buffer liquid
No transparent vessel/barriers required

Phys. Rev. D 105, 072003

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Float liquid scintillator on top of a buffer liquidNo transparent vessel/barriers required

Detector height $<< \lambda_{abs}$

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Performance Testing : Geant4

<u>Scintillator</u> : LAB + 2g/L PPO + 15mg/L bisMSB <u>Shielding</u> : Ethylene Glycol <u>PMTs</u> : 20" R12860 Hamamatsu

Light Collection

	Borexino [6][7]	KamLAND [8][9]	SNO+ [10]	JUNO [11][12]	SLIPS
Target Mass	300t	1kt	780t	20kt	20kt
PMT Coverage	~30%	~34%	~50%	~80%	~30%
Light Collection [photoelectrons/MeV]	~450	~200	~520	>1200	~1100
Light Coll./ Coverage	15%	6%	10%	15%	37%

Would be world-leading!

Horizontal Position Resolution

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Horizontal Position Resolution

Vertical Resolution

PMT hit times vs PMT radius

Z = +4.5m	*
Z = 0m	*
Z = -4.5m	*

Single 3MeV event

Vertical Resolution

PMT hit times vs PMT radius

Z	<u>Z</u> = +4	.5m	*	
Z	<u>Z</u> =	0m	*	
Z	<u> </u>	5m	*	
	— •••••			

Fitting PMT hit times z-position resolution: $\sigma_z \sim 8cm$

15

15

20

25

PMT o-pos [m]

Z = +4.5m

20

LWd 150

100

E 250

Trigge

25

.82 200

150

100

Z = 0

Z = -4.5m

10

Single 3MeV event b 200 BMT Trigg 100 20 25 PMT p-pos [m] Inigger 500 LWI 150 100 25 20 15 PMT p-pos [m] Ê 250 ສູ 200

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

25

25

PMT p-pos [m]

PMT p-pos [m

SNO+ detector Partially filled with ~400 tons of LAB and water

<u>Example</u>: Propylene glycol

DPE-based scintillator

Ethylene glycol

No flour transfers observed

SNO+ detector Partially filled with ~400 tons of LAB and water

3-layer configuration : Avoids reflections

No flour transfers observed

Underground Excavation : Cost Reduction

Costly to excavate large, tall cavities!

Fig from <u>CAS</u>

Underground Excavation : Cost Reduction

Long & narrow tunnels are cheaper Can construct a cuboid SLIPS design

How Narrow?

Narrower cuboid design: More reflections \rightarrow Harder reconstruction

Rencontre Du Vietnam | Alternative Design for Scintillator Detectors | Iwan Morton-Blake

Conclusion

SLIPS is a <u>cheaper</u> and <u>easier-to-build</u> detectors for MeV-scale v physics:

- Size More cheaply increase volume
- Low backgrounds Highly purifiable minimal materials
- Energy resolution High light yield with good position resolution