Constraining hadronization mechanisms via charm-hadron production with ALICE

Chong Kim Pusan National University

Windows on the Universe 30th Anniversary of the Rencontres du Vietnam Aug. 9, 2023

For the ALICE Collaboration

1. Introduction Motivation

- Heavy flavor production
 - e⁺e⁻ vs. pp: from vacuum-like system to complex colliding systems, with multi-parton interactions (MPI)

– pp vs. p–A vs. A–A

- a. pp: reference for "larger" systems, a test of pQCD, study hadronization...
- b. p-A: disentangle the initial state effect (shadowing, color glass condensate...)
- c. A-A: characterization of QGP (collectivity, in-medium energy loss, hadronization...)

1. Introduction Motivation

- Heavy flavor production
 - e⁺e⁻ vs. pp: from vacuum-like system to complex colliding systems, with multi-parton interactions (MPI)
 - pp vs. p–A vs. A–A
 - a. pp: reference for "larger" systems, a test of pQCD, study hadronization...
 - b. p-A: disentangle the initial state effect (shadowing, color glass condensate...)
 - c. A-A: characterization of QGP (collectivity, in-medium energy loss, hadronization...)
 - Describing heavy-flavor production with <u>factorization approach</u> (i.e., large Q²)

$$\frac{d\sigma^{pp \to Hq}}{dp_T} = f_i(x_1, \mu_f^2) f_j(x_2, \mu_f^2) \times \frac{d\sigma^{ij \to q}}{dp_T} (x_1, x_2, \mu_f^2) \times D_{q \to Hq} (z_q = \frac{p_{Hq}}{p_q}, \mu_f^2)$$

Parton distribution functions (PDFs) Hard scattering cross section (via pQCD) Fragmentation function (hadronization)

- a. Among the ingredients, fragmentation functions are:
 - a-1. Parameterized from e^+e^- and e^-p collisions
 - a-2. Assumed to be universal independent of collision systems (e⁺e⁻, e⁻p, pp, p–Pb and Pb–Pb)
- b. Yield ratios of charm hadrons are sensitive to heavy-flavor hadronization mechanism

3 / 16

1. Introduction ALICE detector

Pb–Pb

 $\sqrt{s_{NN}} = 5.02$

~ 56 µb⁻¹ (30-50%)

ALICE apparatus in Run 1 and 2 (2010-2018)

Channels under study in pp, p–Pb, and Pb–Pb

Mesons		Baryons	
$D^0(\bar{u}c) \rightarrow K^-\pi^+$	$D_{s}^{+}(\bar{s}c) \rightarrow \Phi\pi^{+} \rightarrow K^{-}K^{+}\pi^{+}$	$\Lambda_{c}^{+}(udc) \rightarrow pK^{-}\pi^{+}, pK_{s}^{0}$	Ξ_{c}^{+} (usc) $\rightarrow \Xi^{-}\pi^{+}\pi^{+}$
$D^+(\overline{d}c) \rightarrow K^-\pi^+\pi^+$	$D_{s1}^{+}(\overline{s}c) \rightarrow D^{*+}K_{s}^{0} \rightarrow D^{0}\pi^{+}\pi^{-}\pi^{+}$	$\Sigma_c^{0, ++}$ (ddc, uuc) $\rightarrow \Lambda_c^{+} \pi^{-, +}$	$\Omega_c^{\ 0}$ (ssc) $\rightarrow \Omega^{\ -}\pi^{\ +}$
$D^{*+}(\overline{d}c) \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$	$D_{s2}^{+}(\overline{s}c) \rightarrow D^{+}K_{s}^{0} \rightarrow D^{0}\pi^{+}\pi^{-}\pi^{+}$	Ξ_c^0 (dsc) $\rightarrow \Xi^- e^+ v_e^-, \Xi^- \pi^+$	

<u>2. Charm @ ALICE</u> Prompt/Non-prompt D mesons in pp @ \sqrt{s} = 5.02 and 13 TeV

FONLL: JHEP 05 (1998) 007 / FONLL + PYTHIA8: JHEP 03 (2001) 006

- D⁺/D⁰ measured down to $p_T \simeq 0$ and $D_s^+/(D^0 + D^+)$ measured down to $p_T = 2 \text{ GeV}/c$:

non-prompt D-mesons: access to beauty meson production mechanisms

- No significant p_T dependence: independent of prompt/non-prompt, center-of-mass energies
- Good agreement with pQCD (FONLL) calculations:

supports factorization approach and universal fragmentation functions from e^+e^- / e^-p

<u>2. Charm @ ALICE</u> Prompt Λ_c^+/D^0 in pp @ $\sqrt{s} = 5.02$ TeV

6 / 16

PYTHIA 8 (Monash) / <u>Eur. Phys. J. C 74, 3024 (2014)</u> Based on fragmentation functions from e⁺e⁻

PYTHIA 8 (CR Mode 2) / J. High Energy Phys. 08 (2015) 003 Color reconnection beyond leading order,

Introduce new junction topologies which results in increased baryon

Catania / Phys. Lett. B 821, 136622 (2021)

Thermalized system of gluons, light quarks and antiquarks (QGP). Hadronization via coalescence and fragmentation

SH model / Phys. Lett. B 795, 117 (2019)

Replaces complexity of hadronization by thermo-statistical weights, governed by the masses of hadrons at a universal hadronization "temperature"

QCM / Chin. Phys. C 45, 113105 (2021)

Charm is combined with co-moving light antiquark or two quarks. Abundances of charm baryon species are determined by thermal weights

- Significant baryon enhancement vs. e⁺e⁻ result
 - a. A model based on e^+e^-/e^- p fragmentation functions cannot describe the data
 - b. Models based on either modified hadronization mechanisms or

augmented feed-down from higher mass states reproduces the data

c. Suggests further hadronization mechanisms at play

<u>2. Charm @ ALICE</u> Prompt/Non-prompt Λ_c^+/D^0 in pp @ $\sqrt{s} = 13$ TeV and in p-Pb @ $\sqrt{s_{NN}} = 5.02$ TeV

- Agreement within the uncertainties for prompt/non-prompt, in both pp and p–Pb collisions:

similar baryon enhancement independent of system compared to e⁺e⁻

- Non-prompt Λ_c^+ and D⁰ data described by simulations
 - a. The model (FONLL + PYTHIA8 decayer) utilizes frag. functions measured by LHCb
 - b. Most of Λ_c^+ from Λ_b^0 decays

ALICE

7/16

<u>2. Charm @ ALICE</u> D_s^+/D^0 and Λ_c^+/D^0 vs. event multiplicity in pp @ \sqrt{s} = 13 TeV

- D_s^+/D^0 : no dependence on either p_T or multiplicity

- Λ_c^+/D^0 : enhancement in the high multiplicity vs. low (significance of 5.3 σ in 1 < p_T < 12 GeV/c)

ALICE HF / RdV2023

<u>2. Charm @ ALICE</u> D_s^+/D^0 and Λ_c^+/D^0 vs. event multiplicity in pp @ \sqrt{s} = 13 TeV

- D_s^+/D^0 : no dependence on either p_T or multiplicity

- Λ_c^+/D^0 : enhancement in the high multiplicity vs. low (significance of 5.3 σ in 1 < p_T < 12 GeV/c)
 - a. <u>PYTHIA 8 CR-BLC</u>: qualitative description; <u>CE-SH</u>: reproduces the whole measurement
 - b. Comparison to Λ/K_s^0 (backup): similar shape and magnitude common mechanism between light and charm?

9/16

<u>2. Charm @ ALICE</u> \equiv_c^0/D^0 , \equiv_c^+/D^0 , and Ω_c^0/D^0 in pp @ $\sqrt{s} = 5.02$ and 13 TeV

- PYTHIA8 Monash 2013: EPJC74 (2014) 3024

- PYTHIA8 CR Mode: JHEP 08 (2015) 003

- QCM: EPJC78 (2018) 344

- SHM: PLB795, 117 (2019)

- Compared to the previously shown Λ_c^+/D^0 :
 - a. Even larger baryon enhancement vs. models
 - b. No significant energy difference in the Ξ_c^{0} baryon enhancement
 - c. Most models fail to describe the Ξ_c^0 data, <u>only Catania</u> in agreement down to $p_T \simeq 2 \text{ GeV}/c$
 - d. For Ω_c^0/D^0 , Catania with higher mass resonance decays shows best description
 - e. Still long way to go to fully describe charm-baryon production in pp

ALICE

<u>2. Charm @ ALICE</u> Λ_c^+/D^0 and Ξ_c^0/D^0 in pp and p-Pb @ $\sqrt{s_{NN}}$ = 5.02 TeV

– Λ_c^+/D^0 and Ξ_c^0/D^0 :

- a. In both Λ_c^+ and $\Xi_c^0 p$ –Pb ratio is larger than pp for $p_T > 3$ GeV/*c* (for Λ_c^+ opposite for $p_T < 2$ GeV/*c*); possible contribution from collective effects, as radial flow
- b. QCM well describes both pp and p–Pb for Λ_c^+/D^0 , but it tends to underestimate the Ξ_c^0/D^0 ratio

<u>2. Charm @ ALICE</u> D_s^+/D^0 and Λ_c^+/D^0 in Pb-Pb @ $\sqrt{s_{NN}}$ = 5.02 TeV

- D_s⁺/D⁰ : <u>higher ratio in Pb–Pb than pp</u>, by 2.3 σ (0-10%) and by 2.4 σ (30-50%) in the 2 < p_T < 8 GeV/c

 \rightarrow The double ratio > 1 can be D formation via coalescence in strange-quark rich environment

- − Λ_c^+/D^0 : higher ratio in Pb–Pb than pp, by 3.7σ (0-10%) and by 2.0σ (30-50%) in the 4 < p_T < 8 GeV/c
 - \rightarrow Could be due to the presence of relevant contribution of coalescence to $\Lambda_c{}^{\scriptscriptstyle +}$ hadronization

- $p_{\rm T}$ - integrated $\Lambda_{\rm c}^+/{\rm D}^0$ yield vs. charged-particles multiplicity

- a. No significant difference by multiplicity, energy, and collision system: PYTHIA8 CR-BLC: JHEP08 (2015) 003 the multiplicity hierarchy observed in the $1 < p_T < 12$ GeV/*c* interval in pp is due to momentum redistribution, but no modification of the overall yield?
- b. The cannot (can) be reproduced by PYTHIA8 Monash (CR-BLC)

ALTCE

- TAMU: PRL124 (2020) 042301

- PYTHIA8 Monash 2013: EPJC74 (2014) 3024

<u>2. Charm @ ALICE</u> R_{pPb} , Non-prompt D⁰, Λ_c^+ , and $\Xi_c^0 @ \sqrt{s_{NN}} = 5.02$ TeV

- R_{pPb} of non-prompt D⁰: in agreement with CMS B⁺ measurement for the common p_{T} range;

 $p_{\rm T}$ integrated non-prompt D⁰ $R_{\rm pA}$ also agrees with LHCb B⁺ and non-prompt J/ ψ (backup)

- $R_{\rm pPb}$ of $\Lambda_{\rm c}^+$ and $\Xi_{\rm c}^{0}$:
 - a. Agree with each other within the uncertainties
 - b. Well described by QCM

<u>2. Charm @ ALICE</u> Fragmentation fractions in pp and p-Pb @ $\sqrt{s_{NN}}$ = 5.02 TeV

- a. Significant baryon enhancement in pp and p-Pb, compared to e^+e^- and e^-p
- b. No significant system dependence between pp and p-Pb
- Charm production cross section:
 - a. Measured at midrapidity (|y| < 0.5) as a sum of ground state hadron production cross sections
 - b. No significant system dependence between pp and p-Pb; lies on the upper edge of pQCD uncertainty

ALICE

<u>Summary</u>

16 / 16

- Charm production with ALICE
 - Meson-to-meson ratio: no significant p_{T} dependence regardless of system or energy
 - Baryon-to-meson ratio
 - a. Significant enhancement vs. e⁺e⁻: models based on e⁺e⁻ cannot describes the result,
 suggests modified hadronization mechanism
 - b. Multiplicity dependence observed in pp
 - R_{pA} : no (clear) p_T dependence for meson (baryon)
 - Fragmentation fraction: significant baryon enhancement vs e⁺e⁻, questions universal fragmentation functions across collision systems

• Ongoing: ALICE Run 3

- Better data in both quantity and quality:

about × 50-100 larger data samples than Run2, upgraded TPC/ITS, and improved primary vertex resolution

- Upgraded reconstruction capability:

direct reconstruction of beauty hadrons, reconstruction of complex decay channels,

Run 2 measurements with improved precision...