Recent ATLAS measurements in heavy-ion collisions

Pb+Pb, 5.02 TeV Run: 366011 Event: 999067412 2018-11-15 22:59:24 CEST

Lydia Beresford on behalf of the ATLAS Collaboration Windows on the Universe 9th August 2023

 $p_{\rm T}^{\rm Jet}$ = 289.7 GeV $\Sigma E_{\mathrm{T}}^{\mathrm{FCal}} = 3.74 \mathrm{TeV}$

Very broad physics programme in ATLAS heavy ion group: Pb, Xe, p, photon

Today will focus mainly on recent Pb+Pb results for hard processes:

Head-on collisions

Lydia Beresford

Ultra-peripheral collisions

Head-on collisions

Pb+Pb, 5.02 TeV Run: 366011 Event: 999067412 2018-11-15 22:59:24 CEST

 $p_{\rm T}^{\gamma}$ = 420.1 GeV $p_{\rm T}^{\rm det} = 289.7 \,\,{\rm GeV}$ $\Sigma \boldsymbol{E}_{\mathrm{T}}^{\mathrm{FCal}} = 3.74 \mathrm{TeV}$

Quark Gluon Plasma (QGP)

https://twitter.com/QM2018

LHC heavy ion collisions can produce hot, dense, medium with free colour charges

\rightarrow Quark Gluon Plasma (QGP)

High momentum partons strongly interact in QGP & lose energy (gluon radiation & scattering) before hadronising

\rightarrow Jet quenching

Binding potential of quarkonia e.g. $\Upsilon(b\overline{b})$ can be modified in QGP (colour screening by QGP constituents)

→ Suppression of Quarkonia

https://twitter.com/QM2018

Quantify yield suppression relative to proton-proton → Nuclear modification factor:

$R_{AA} < 1 \rightarrow Suppression$

Suppression stronger for more central collisions (larger QGP volume)

B-jets

Goal: study mass & colour-charge dependence (quark vs gluon) of jet energy loss

Mass dependence: "dead-cone effect"

Lighter quark jets

Radiation suppressed in $\theta <$ m/E

Colour-charge dependence: Gluons more likely to radiate than quarks

Utilise semi-leptonic decay of b-hadron, correct for missing neutrino energy

B-jets ~20% less suppressed than inclusive jets in central collisions

Photon-tagged jet

Goal: isolate colour-charge dependence (quark vs gluon) of jet energy loss

Quark-initiated jets dominate

Quark-enhanced photon-tagged jets less suppressed than inclusive jets

Other factors: p_T spectra steepness, isospin, nPDF effects \rightarrow Use S_{loss} to reduce impact (see backup)

 \rightarrow Strong confirmation of more jet quenching for gluon jets than quark jets

2303.10090

Jet substructure

Goal: study splitting-angle dependence of jet energy loss

rg

Anti-kt jets (R=0.4) re-clustered with Cambridge-Aachen algorithm

Groom using soft-drop procedure \rightarrow Identify first hard splitting

r_g= angle between two sub-jets

Extended study to large radius jets, see: <u>2301.05606</u>

Dijet asymmetry in Pb+Pb and Xe+Xe

Рт2 **Transverse momentum balance:** x_J = PT1

Balanced dijets more suppressed

PRC 107 054908

2302.03967

Xe+Xe results consistent with Pb+Pb results after correcting for different centre-of-mass energy

Upsilon production

Goal: study upsilon production in the QGP

Pb+Pb: Sequential suppression of $\Upsilon(bb)$ states \rightarrow Excited states dissolve at lower QGP temperature

Also seen in <u>p+Pb collisions</u>

What about pp?

Lydia Beresford

PRC 107 054912

Upsilon production in proton-proton

Study (PU subtracted) $\langle N_{ch} \rangle$ as function of Υ p_T for **1S**, **2S** & **3S**

At Υ p_T < 30 GeV:

- Higher N_{ch} for **1S** than for **2S** & **3S** •
- Not predicted by Pythia MC •

Suggests correlation between UE & hard process

Sequential suppression? Other soft QCD effect e.g. colour reconnection? . . .

<n_{ch}> = Mean number of charged particles with 0.5 < p_T < 10 GeV & η < 2.5

Lydia Beresford

ATLAS-CONF-2022-023

Ultra-peripheral collisions (UPC)

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

$\gamma\gamma \rightarrow ee$

Goal: Improve our understanding of photon-flux

Use Zero Degree Calorimeter (ZDC) to categorise events \rightarrow No neutrons on either side (0n0n) targets both Pb ions remaining intact

Lydia Beresford

 $\gamma\gamma \rightarrow ee$: <u>JHEP 06 (2023) 182</u> $\gamma\gamma \rightarrow \mu\mu$: <u>PRC 104 024906</u>

$\gamma\gamma \rightarrow \tau\tau$: Tau g-2

Goal: measure the tau anomalous magnetic moment

Spin 1/2 charged particles magnetic mor

Anomalous magnetic moment ('g-2'):

Lydia Beresford

ment:
$$\boldsymbol{\mu} = g \frac{q}{2m} \mathbf{S}$$

$$a = \frac{(g-2)}{2}$$

$\gamma\gamma \rightarrow \tau\tau$: Tau g-2

Goal: measure the tau anomalous magnetic moment

$\gamma\gamma \rightarrow \tau\tau$ cross-section sensitive to tau g-2

Lydia Beresford

Additional sensitivity:

- Measure **differentially** in muon p_T
- Constrain photon-flux in $\gamma\gamma \rightarrow \mu\mu$ control region

$\gamma\gamma \rightarrow \tau\tau$: Tau g-2

ATLAS & CMS set first new constraints on a_{τ} since 2004 First measurements of τ leptons in heavy ion collisions

Constraints competitive with DELPHI

Statistical uncertainty dominates \rightarrow Will improve with more data!

Lydia Beresford

Summary

- **New studies of jet energy loss** dependence on initiating parton: B-jets, photon-tagged jets, substructure, dijets
- Sequential suppression of Υ states in **Pb+Pb collisions**
- Interesting correlations between UE & Υ production in proton collisions
- UPC measurements improve our understanding photon flux & constrain tau g-2

Lydia Beresford

Expect to at least double Pb+Pb dataset in 2023!

Heavy ion collision November 2022 $\sqrt{s_{NN}} = 5.36 \text{ TeV}$

