

New results on $t\bar{t}W$ and $t\bar{t}t\bar{t}$ production with the **ATLAS** experiment

Windows on the Universe, Quy Nhon

09 August 2023

Sreelakshmi Sindhu II Physics Institute, University of Goettingen On behalf of the ATLAS collaboration

Why ttW and tttt?

- $t\bar{t}t\bar{t}$: Very rare process, was not observed yet
- $t\bar{t}W$: prediction has been consistently below observation in ATLAS and CMS measurements
- Important to measure rare top processes at high precision to identify any discrepancies in SM

Interdependence between rare top processes in multi lepton channel

Arrows denote dominant backgrounds

Sreelakshmi Sindhu

New *ttW* measurement

Overview

- ATLAS and CMS consistently measured 20-50% excess in comparison to SM NLO theory prediction
- Main background in $t\bar{t}t\bar{t}$ and many $t\bar{t}H$ decay channels
- Very challenging process with complex NLO QCD and electroweak contributions
- Theory predictions
 - $\sigma(t\bar{t}W) = 722 \pm 7$ fb <u>JHEP11(2021)029</u> (NLO with FxFx merging)
 - $\sigma(t\bar{t}W) = 745.3 \pm 6.9$ fb <u>arXiv:2306.16311</u> (NNLO)
- Mis-modelling observed previously -> First differential measurement

Sreelakshmi Sindhu

 Z/γ

LO3

NLO3

O NLO

LOCD

uus-

a-us

 $\alpha \alpha_s^3 \alpha^2 \alpha_s^2 \alpha^3 \alpha_s \alpha^4$

Signal regions

- Using multi lepton final state
 - 2 Same Sign leptons or 3 leptons
- ≥2 jets
- ≥1b-jet 60% or ≥2b-jets 77%
- Remove dominant $t\bar{t}Z$ background by excluding OSSF and 3L pair with mass in Z peak
- For inclusive measurement, events are classified into 56 Signal regions, based on:
 - the number of jets (2/3, 4, 5+), b-jets(1, 2+) \bullet and leptons (2,3)
 - total charge of leptons(+1,-1) \bullet
 - flavour(e/μ).

Sreelakshmi Sindhu

Main backgrounds

- Diboson, $t\overline{t}Z, t\overline{t}H$
- fake/non-prompt leptons mainly from $t\bar{t}$ production, charge misID (electron)

Control regions

- Dedicated control regions for $t\bar{t}Z$ and Dibosons \bullet
- \bullet
- \bullet

Fake leptons

Results - inclusive

Sreelakshmi Sindhu

Results - charge asymmetry

 $\sigma(t\bar{t}W^+)$ $\frac{2}{5} = 1.95 \pm 0.21$ (stat) ± 0.16 (syst) $\overline{\sigma(t\bar{t}W^{-})}$

Sreelakshmi Sindhu

$$A_c^{rel} = \frac{\sigma(t\bar{t}W^+) - \sigma(t\bar{t}W^-)}{\sigma(t\bar{t}W^+) + \sigma(t\bar{t}W^-)}$$

 $A_C^{rel} = 0.32 \pm 0.05(stat) \pm 0.03(syst)$

Good agreement with prediction

Results - Differential

- Consistent with the results from the inclusive measurement
- Unfolded data shows good agreement with all MC in shape

Absolute Cross-section

Sreelakshmi Sindhu

• First differential measurement of $t\bar{t}W$ for 7 observables using profile likelihood unfolding

tttt production

Sreelakshmi Sindhu

Overview

- Extremely rare and heavy final state, first observation in this paper
- Predicted:
 - $\sigma(t\bar{t}t\bar{t}) = 12.0 \pm 2.4$ fb <u>JHEP 02 (2018) 031</u> (NLO QCD)
 - $\sigma(t\bar{t}t\bar{t}) = 13.4^{+1.0}_{-1.8}$ fb <u>arXiv:2212.03259</u> (NLO+NLL')
- Good candidate for BSM studies $-> t\bar{t}t\bar{t}$ cross-section enhanced
- Sensitive to top-Yukawa coupling
- Sensitive to four-fermion coupling and Higgs oblique parameter

Overview

Evidence for the production of $t\bar{t}t\bar{t}$ was seen by both ATLAS and CMS

Improvements in this analysis:

- Includes lower p_T leptons and jets —> \bullet increase acceptance
- New improved B-tagging algorithm
- Data driven estimate for the dominant ttW \bullet background
- Graph Neural Network (GNN) to separate lacksquaresignal and background
- Improved treatment of $t\bar{t}t$ \bullet
- Updated MC simulation and luminosity calibration

Sreelakshmi Sindhu

	ATLAS+CMS Preliminary		Run 2, √ s = 13 TeV, N	November 202
	$\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5}$ (scale) fb JHEP 02 (2018) 031 NLO QCD+EW		tot. stat.	
			$\sigma_{\pi\pi} \pm \text{tot.} (\text{stat.} \pm \text{syst.})$	Obs. (Exp.) Si
\triangleleft	ATLAS, 2LSS/3L, 139 fb ⁻¹ EPJC 80 (2020) 1085	₩	24 ⁺⁷ ₋₆ (5 ⁺⁵ ₋₄) fb	4.3 (2.4) c
	ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118		■ 26 ⁺¹⁷ ₋₁₅ (8 ⁺¹⁵ ₋₁₃) fb	1.9 (1.0) c
	ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	┠┼╌┯╌┼╌┫	24 ⁺⁷ ₋₆ (4 ⁺⁵ ₋₄) fb	4.7 (2.6) d
	CMS, 2LSS/3L, 137 fb ⁻¹ EPJC 80 (2020) 75	 1	12.6 ^{+5.8} _{-5.2} fb	2.6 (2.7) c
	CMS, 1L/2LOS, 35.8 fb ⁻¹ JHEP 11 (2019) 082		0 ⁺²⁰ fb	0.0 (0.4) c
	CMS, 1L/2LOS/all-had, 138 fb ⁻¹ CMS-PAS-TOP-21-005 *	F	→ 38 ⁺¹³ fb	3.7 (1.5) o
\triangleleft	CMS, comb., 138 fb ⁻¹ CMS-PAS-TOP-21-005 *	┝╾┯╌┥	17 ⁺⁵ ₋₅ fb	3.9 (3.2) d
	*Preliminary			
	0	20 40	$\sigma_{t\tilde{t}t\tilde{t}}$ (fb)	100

Signal selection

Handling *ttW* background

- $t\bar{t}W$ background modelling has large uncertainties, lacksquareestimated using data in jet multiplicity bins
- 4 dedicated control regions for $t\bar{t}W$ to extract 4 factors, $a_0, a_1, t\bar{t}W^+, t\bar{t}W^-$
- Scale factors a_0, a_1 are defined using: \bullet
- $N(j+1) = a_0 * N(j)$ at high jet multiplicity
- $N(j+1) = \frac{a_1}{1+n} * N(j)$ at low jet multiplicity

<i>ttW</i> background	a_0	a_1	$NF_{t\bar{t}W^+(4jet)}$	$NF_{t\bar{t}}$
Value	0.51 ± 0.10	$0.22^{+0.25}_{-0.22}$	$1.27^{+0.25}_{-0.22}$	1.1

Sreelakshmi Sindhu

Validation by removing all charge symmetric backgrounds Z-⁺Z **ATLAS** Data ∏tĪW $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 160 tīttī Others CRs+SR *Uncertainty* 140 Post-Fit 120 100 80 60 40 20 Data / Pred. $W^{-}(4 \text{jet})$ +0.31 -0.28 8 ≥ 10 6 9 5 7 4

Results

- Graph Neural Network used to distinguish signal and \bullet background
- GNN output chosen as observable in signal region \bullet
- Signal generator choice and statistical uncertainties largest source of uncertainties
- Observed 6.1σ over background only hypothesis \bullet (Expected 4.3 σ)

 $\sigma(t\bar{t}t\bar{t}) = 22.5^{+4.7}_{-4.3}(\text{stat}) \stackrel{+4.6}{_{-3.4}}(\text{syst})$ fb

Consistent with SM prediction (12.0 ± 2.4 fb) at 1.8σ

Sreelakshmi Sindhu

Results

- Graph Neural Network used to distinguish signation \bullet background
- GNN output chosen as observable in signal
- Signal generator choice and statistical uncer largest source of uncertainties
- Observed 6.1 σ over background only hypoth \bullet (Expected 4.3 σ)

 $\sigma(t\bar{t}t\bar{t}) = 22.5^{+4.7}_{-4.3}(\text{stat}) \stackrel{+4.6}{_{-3.4}}(\text{syst})$ fb

Consistent with SM prediction $(12.0 \pm 2.4 \text{ fb})$

Sreelakshmi Sindhu

anal and	ATLAS+CMS Preliminary LHC <i>top</i> WG		√s = 13 TeV, June
griai and	$\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5}$ (scale) fb $\sigma_{t\bar{t}t\bar{t}}$ JHEP 02 (2018) 031 ar	$_{t\bar{t}} = 13.4 ^{+1.0}_{-1.8} (scale+$ (iv:2212.03259	-PDF) fb H + + + + + + + + + + + + + + + + + +
region			$\sigma_{\text{fff}} \pm \text{tot.} (\pm \text{stat.} \pm \text{syst.})$
tainties	ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118	┝╧╾┼───┛	26_{-15}^{+17} (±8 $_{-13}^{+15}$) fb
	ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	┠┼╶╤╶┼╌┨	24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄) fb
hesis	CMS, 1L/2LOS/all-had, 138 fb ⁻¹ arXiv:2303.03864	┠┼╌╋╌┼╌┨	36 ⁺¹² ₋₁₁ (±7 ⁺¹⁰ ₋₈) fb
	CMS, comb., 138 fb⁻¹ arXiv:2303.03864	₭_▼ _∦	17±5 (±4 ±3) fb
	ATLAS, 2LSS/3L, 140 fb ⁻¹ arXiv:2303.15061	<u>}</u> , ₩	22.5 ^{+6.6} _{-5.5} (^{+4.7 +4.6} _{-4.3 -3.4}) fb
	CMS, 2LSS/3L, 138 fb ⁻¹ arXiv:2305.13439	┣━━─╢	17.7 $^{+4.4}_{-4.0} (^{+3.7}_{-3.5} ^{+2.3}_{-1.9})$ fb
o) at 1.8σ			
	0	20 40	60 80 100 σ _{tītī} [fb]

Interpretations - ttt

SM three top production

- Cross section ~ 10 times smaller than the four top process
- Significantly populates the signal region

Sreelakshmi Sindhu

Interpretations - BSM

Top Yukawa coupling

 $\mathscr{L} = 1/\sqrt{2}h_t y_t \overline{t}(\cos\alpha + i\sin(\alpha)\gamma_5)th$ CP even CP odd

• CP even, obs (exp) |kt|<1.8 (1.6)

Sreelakshmi Sindhu

Limits on heavy flavour fermion operators in EFT

Operators	Expected C_i/Λ^2 [TeV $^{-2}$]	Observed C_i/Λ^2 [TeV $^{-2}$]
O_{OO}^1	[-2.4, 3.0]	[-3.5, 4.1]
$O_{Ot}^{\tilde{1}\tilde{c}}$	[-2.5, 2.0]	[-3.5, 3.0]
$O_{tt}^{\widetilde{1}}$	[-1.1, 1.3]	[-1.7, 1.9]
O_{Qt}^8	[-4.2, 4.8]	[-6.2, 6.9]

Higgs oblique parameter

$$\hat{H} < 0.2$$

$$\hat{H$$

Conclusion

Two very interesting results from the ATLAS collaboration

- Full Run 2 (140 fb⁻¹) measurement of $t\bar{t}W$ cross-section
 - Consistent with the SM upto 1.5σ
 - First differential cross-section measurement for ttW, performed for 7 observables
- First observation of four top quark production (6.1 σ)
 - Limits set on three top cross-section
 - Improvement in the limits of 3 four-fermi operators
 - Upper limit set on Higgs oblique parameter
- Both processes show slight excess in comparison to SM, making it an interesting choice for further investigations especially with more data from Run 3

