30th Anniversary of the Rencontres du Vietnam

WINDOWS ON THE UNIVERSE

Measurements of QCD in W/Z and multijet events in ATLAS

Ke Li on behalf of ATLAS Collaboration

30th Anniversary of Rencontres du Vietnam

09/08/2023

QCD in W/Z and multijets in ATLAS

Vietnam2023

09/08/2023

UNIVERSITY of

WASHINGTON 1

Overview

- Processes involving W/Z bosons and jets are standard candle for precision measurements and theory at LHC
 - The precise measurements of the production cross sections provide important tests of perturbative QCD
 - Measure fundamental parameters of the Standard Model (SM)
 - Improve our understanding of Parton Distribution Functions (PDFs)
- This talk will focus on the recent QCD related precise measurements in ATLAS
 - Prompt inclusive photon production at 13 TeV, <u>IHEP07(2023)086</u>
 - Multijet event isotropies at 13 TeV, <u>arXIV:2305.16930</u>
 - Z + high pT jets at 13 TeV, <u>IHEP06(2023)080</u>
 - W + charm hadrons at 13 TeV, <u>arXiv:2302.00336</u>
 - W and Z transverse momentum spectra at 5.02 and 13 TeV, <u>ATLAS-CONF-2023-028</u>
 - Precise determination of strong coupling constant
 - from transverse energy-energy correlations in multijets event at 13 TeV, <u>IHEP 07 85 (2023)</u>
 - from the recoil of Z bosons at 8 TeV, <u>ATLAS-CONF-2023-015</u>

Prompt inclusive photon production and its dependence on photon isolation

- Cleaner than jet production to test pQCD due to less of hadronisation effects
- Two processes contribute for prompt-photon production
 - **Direct process**: sensitive to the gluon density in the proton and can be used as input to global QCD fits to help to constrain the PDF.
- In addition to prompt photons, photons are produced copiously inside jets
 - Need isolation to study prompt photons
 - $\circ~$ The isolation is based on the energy deposited inside a circle of radius R (0.2 and 0.4) centered on the photon in the $\eta\text{-}\phi$ plane
- Photon selection: $E_{\rm T}^{\rm iso} < E_{\rm T,cut}^{\rm iso} \equiv 4.2 \cdot 10^{-3} \cdot E_{\rm T}^{\gamma} + 4.8 \, {\rm GeV}$
 - $\circ~~E_T>250GeV,~|\eta|<\!2.37,~excluding<\!1.37|\eta|<\!1.56,~trigger~eff~100\%$
 - Tight Photon ID
 - Photon isolation (R=0.2, 0.4)

Vietnam2023

09/08/2023

Differential cross sections

- All of the SHERPA NLO/JETPHOX/NNLOJET are consistent with measurements within uncertainties
- Systematic uncertainties dominated by the photon energy scale and luminosity.
 - Total uncertainty in the range 3% 20%, depending on the E^{T}_{γ} and $|\eta_{\gamma}|$ region

- NNLO scale uncertainties reduced by more than a factor 2 w.r.t. NLO JETPHOX and SHERPA
- For JETPHOX, several PDFs compared: MMHT2014, CT18, NNPDF3.1, HERAPDF2.0, and ATLASpdf21

QCD in W/Z and multijets in ATLAS

R dependency of differential cross sections

- The dependence on R is studied by measuring the ratios of the differential cross sections for R=0.2 and R=0.4 as functions of E_v^T the different $|\eta_v|$ regions
- **No dependence** on the proton PDFs of the predictions of the ratio of the differential cross sections with R = 0.2 and R = 0.4 is observed.
- These measurements provide a very stringent test of pQCD with reduced experimental and theoretical uncertainties (both ~1% !)
 - Validation of the underlying pQCD theoretical description including NNLO corrections up to $\mathcal{O}(a_s^2)$

Measurements of multijet event isotropies using optimal transport

- Event shapes are used to probe fundamental properties of QCD, to tune MC, and to search for BSM
- **Event isotropies:** how far a collider event is from a symmetric radiation pattern in terms of a Wasserstein distance metric
- **Energy-Mover's Distance (EMD):** the minimum amount of 'work' necessary to transport one event ε with *M* particles into another ε ' with *M*' particles, by movements of energy f_{ij} from particle i to particle j

$$\operatorname{EMD}_{\beta}(\mathcal{E}, \mathcal{E}') = \min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} \theta_{ij}^{\beta},$$

 θ_{ii}^p : ground measure between particles

- This EMD define an optimal transport problem between energy flow in event ε and reference event ε'
- Input object for EMD calculation are jet
 - Not sensitive to non-perturebative QCD effects, i.e. hadronisation
 - Mass is not used

3 event shape variables are considered

09/08/2023

QCD in W/Z and multijets in ATLAS

Event isotropies: 1-I¹²⁸_{Ring}

- Ring-like event isotropy (cylinder-like is in backup)
- Dijet events produce smallest value while multijet event produce the largest value
- Powheg+Pythia and Powheg+Herwig predictions are disagree with others
 - Overestimate the isotropic events
- Large difference between Herwig angle-ordered and dipole shower models
 - Dipole predicts more dijet-like events
- No notable difference between Sherpa hadronisation models
- Uncertainty of measurements is dominant by jet energy scale (JES) and jet energy resolution (JER)

QCD in W/Z and multijets in ATLAS

Vietnam2023

ATLAS

Z+high pT jets

- High-pT jet and Z phase spaces sensitive to NNLO QCD and higher order EW corrections
- First ever Z + high-pT jets measurement using the full Run-2 dataset
- Measurements unfolded to fiducial phase space
 - Two leptons with pT≥25 GeV & $|\eta|$ <2.5
 - 71 ≤m_{ℓℓ}≤ 111 GeV
 - ≥1 jet with pT≥100GeV & |y|<2.5
- Using $\Delta R_{Z,jet}^{min} = \sqrt{\Delta y^2 + \Delta \phi^2}$ to study enhanced topologies

The cross sections predicted by the three generators (Sherpa, MG5_aMC@NLO+PY8 and NNLOJET) and the NNLOjet predictions agree with the measured values within the theory uncertainties.

- The first two include PS but are NLO, while the third one provide only fixed-order calculations at both NLO and NNLO
- NLO virtual EW corrections have 10% 20% impact on events with $P_T \ge 500$ GeV.
- QCD scale uncertainties very large: several 10s of %.

09/08/2023

QCD in W/Z and multijets in ATLAS

Vietnam2023

8

W + charm hadrons

- W + c production is dominant by $gs \rightarrow W^{-}c$
 - Sensitive to the s-quark PDF
- Strategy: identify c-jet via charmed hadron reconstruction
- *W* + c signal extracted through profile likelihood fit
 - *D*+: reconstructed secondary-vertex mass distribution
 - *D**+: mass difference *m*(*D**+-*D*0) 0
- Fiducial cross-sections
 - Fiducial region: 0
 - pT(l)>30 GeV, |n(l)|<2.5 for W
 - pT(D^(*))>30 GeV, |n(D^(*))|<2.5 for D^(*)
 - Data-theory agreement for all PDFs Ο
 - Precision (syst. dominated) comparable to the PDF uncertainties 0

R_c measurement

- Systematics in the "+" and "-" channels mostly cancel out
- PDFs which assume ($s-\bar{s}$) asymmetry in worse agreement with ATLAS data --> 0 asymmetry is small in the region probed by this analysis

 $\sigma_{\text{fid}}^{\text{OS-SS}}(W^- + D^+) = 50.2 \pm 0.2 \text{ (stat.)} {}^{+2.4}_{-2.3} \text{ (syst.) pb}$ $\sigma_{\rm fd}^{\rm OS-SS}(W^++D^-) = 48.5 \pm 0.2 \,(\text{stat.})^{+2.3}_{-2.2} \,(\text{syst.}) \,\text{pb}$ $\sigma_{\rm fid}^{\rm OS-SS}(W^- + D^{*+}) = 51.1 \pm 0.4 \,(\text{stat.})^{+1.9}_{-1.8} \,(\text{syst.}) \,\text{pb}$ $\sigma_{\rm fd}^{\rm OS-SS}(W^++D^{*-}) = 50.0 \pm 0.4 \,(\text{stat.})^{+1.9}_{-1.8} \,(\text{syst.}) \,\text{pb}$ $R_c^{\pm}(D^{(*)}) = 0.971 \pm 0.006 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$ $D^+ \rightarrow K^- \pi^+ \pi^+$ and

$$D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$$

$$D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+.$$

$$D^{*+} \to D^0 \pi^+ \to (K^- \pi^+) \pi^+.$$

$$h^+ \to D^0 \pi^+ \to (K^- \pi^+) \pi^+.$$

$$^{+} \rightarrow D^{0}\pi^{+} \rightarrow (K^{-}\pi^{+})\pi^{+}.$$

ATLAS √s = 13 TeV, 140 fb⁻¹

$$\sigma_{fid}(W + D^+)$$
 [pb]

 $W + D^+ (\rightarrow K \pi \pi)$

PDF

100

 $\sigma_{\rm fid} = 50.2 \pm 0.2 \text{ (stat.)}^{+2.4}_{-2.2} \text{ (syst.) pb}$

09/08/2023

W/Z pT at 5.02 and 13 TeV

- Precise measurement of the W pT is important in reducing the modeling uncertainty in the W mass measurements
- Hadronic recoil is the main limitation of the pT W measurements
 - Pile-up events add energy to the recoil and hinder the experimental extraction of W pT
 - \circ Calibration of recoil (u_T) is carried out in-situ using Z events
 - Modeling of underlying activity
 - Response and resolution corrections, azimuthal angle
 - Dominant uncertainty
- Dedicated low-pileup runs with <µ> of about 2 taken in 2017 and 2018
 - 255 pb⁻¹ at 5.02 TeV and 338 pb⁻¹ at 13 TeV
- Fiducial volume

 $W \to \ell \nu : p_{\rm T}^{\ell} > 25 \text{ GeV}, |\eta^{\ell}| < 2.5, p_{\rm T}^{\nu} > 25 \text{ GeV}, \text{ and } m_{\rm T} > 50 \text{ GeV}$ $Z \to \ell \ell : p_{\rm T}^{\ell} > 25 \text{ GeV}, |\eta^{\ell}| < 2.5, \text{ and } 66 \text{ GeV} < m_{\ell \ell} < 116 \text{ GeV}$

• Bayesian unfolding of u_{τ} for W and pT($\ell\ell$) for Z

W/Z pT differential cross sections

- Precise measurements of the spectra at low pT are particularly interesting for future W mass study
- Predictions using the ATLAS tune (used for the W mass measurement on 7 TeV data) describe data reasonably at low pT especially at √s=5.02 TeV
 - Failed to describe data at 13 TeV
 - Better for Z cross section
- Better performance from Sherpa 2.2.5 and 2.2.1 at high pT
- The DYTURBO predictions (NNLO in QCD) show the best agreement and generally match the data at percent level
 - Small difference in different PDF sets
- Beneficial for future W mass measurement

Determination of strong coupling constants - α_s

- Strong coupling constant is the least well known in nature
- Dominant uncertainties to precision measurements of Higgs coupling at LHC or EW precision observables at lepton colliders

Recent two studies in ATLAS: Extract the strong coupling constants from:

- Transverse energy-energy correlations at 13 TeV
- Z pT measurements at 8 TeV

Strong coupling constants from transverse energy-energy correlations

- In addition to event shape measurement, the multijet events can be used to precisely extract the strong coupling α_s
- TEEC: transverse energy weighted distribution of the azimuthal differences between jet pairs
 - Essentially an energy-weighted ratio of three-jet to two-jet 0 cross sections

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta\left(\cos\phi - \cos\varphi_{ij}\right)$$

ATEEC: difference between the forward (cos $\phi > 0$) and backward $(\cos \phi < 0)$ part of TEEC

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma^{\mathrm{asym}}}{\mathrm{d}\cos\phi} = \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\pi-\phi}$$

- Both are sensitive to gluon radiation and strong coupling
- Full Run2 dataset
 - pT > 60 GeV, $|\eta| < 2.4$, $H_{T2}=pT_1+pT_2 > 1$ TeV 57.5M events after selections
 - \cap
 - unfolded to particle level
- NNLO pQCD calculations applied for the first time in gg->jjj process [PRL.127.152001]
 - Significant reduction of theoretical uncertainty
 - A factor of 3 in cross sections for both TEEC and ATEEC and in α_s

09/08/2023

QCD in W/Z and multijets in ATLAS

Determination of the strong coupling $\alpha_{s}(Q)$

- Determination of $\alpha_s(Q)$ from the (A)TEEC in 10 intervals at NNLO accuracy in pQCD
 - obtained for both the inclusive and 10 exclusive bins in H_{T2}
 - Running scale Q as half averaged HT of all final-state partons in each H_{T2} bin
- TEEC with better experimental precision, ATEEC with better theoretical precision
- Uncertainty dominated by the jet energy scale and the model used to correct for detector effects
- Good agreement with other measurements and RGE prediction

 $\alpha_{\rm s}(m_Z) = 0.1175 \pm 0.0006 \,(\text{exp.})^{+0.0034}_{-0.0017}$ (theo.) and $\alpha_{\rm s}(m_Z) = 0.1185 \pm 0.0009 \,(\text{exp.})^{+0.0025}_{-0.0012}$ (theo.).

World average (PDG) $\alpha_s(m_z) = 0.1179 \pm 0.0009$

09/08/2023

ATLAS-CONF-2023-015

Extraction of α_s from Z pT at 8 TeV

- Further measurement of $\alpha_s(m_Z)$ is limited by two theoretical uncertainties:
 - The accuracy of the perturbative predictions
 - The non-perturbative effects.
- State of art prediction:
 - DYTURBO: aN⁴LL resummation + N³LO perturbative with aN³LO MSHT20 PDF
- Peak position of Z pT is sensitive to $\alpha_s(m_Z)$
 - QCD initial state radiation (ISR)
 - Can be measurement precisely
- Extraction from fitting the double differential pT-y cross section in full lepton phase space
 - extracted through a χ^2 scan for α_c variations
 - Fit range: Z pT is < 29 GeV (vary the range to study systematic uncertainty)
 - χ2 /ndf = 82/72
 - \circ $\;$ an float nuisance parameter for the non-perturbative form factor affecting the Z $\;$ pT < 5 GeV region

$$\chi^2(\beta_{\exp},\beta_{th}) =$$

$$\sum_{i=1}^{N_{\text{data}}} \frac{\left(\sigma_i^{\text{exp}} + \sum_j \Gamma_{ij}^{\text{exp}} \beta_{j,\text{exp}} - \sigma_i^{\text{th}} - \sum_k \Gamma_{ik}^{\text{th}} \beta_{k,\text{th}}\right)^2}{\Delta_i^2} + \sum_i \beta_{j,\text{exp}}^2 + \sum_i \beta_{k,\text{th}}^2.$$

09/08/2023

Vietnam2023

 \mathbf{Z}/γ^*

Most precise experimental result

Precision similar to world average and lattice calculation

$$\alpha_{\rm s} = 0.11828 + 0.00084 - 0.00088$$

09/08/2023

Summary

- Wealth of precise measurements with multijet and W/Z events at ATLAS
 - Differential cross section for inclusive photon, Z + high pT jets, W + charm, W/Z pT spectra
 - compared to state-of-the-art NLO and NNLO prediction
 - Event shape variables
 - No MC can describe all the isotropies
 - Strong coupling constants
 - Two measurements with different approach, consistent with each other and with predictions
 - Most precise result and first determination using aN⁴LL + N³LO prediction from Z pT study
 - Beneficial for the improvement of MC generator modelling, perturbative and non-perturbative effects, and W mass measurement ...
- Run3 is on-going
 - Experimental & theoretical physicists need to collaborate and improve our understanding
 - Many more results still to come.

09/08/2023

QCD in W/Z and multijets in ATLAS