Toward global fits using Higgs STXS data with Lilith

Le Duc Ninh

Phenikaa University, Hanoi, Vietnam

Windows on the Universe, 9 August 2023, Quy Nhon, Vietnam

collaborators: Le Van Dung, Sabine Kraml, Tran Quang Loc, Nguyen Dang Bao Nhi

Higgs production processes at the LHC

Higgs decays & signal strength (SS)

Signal strength:

$$\mu_i^f = \frac{(\sigma_i \times \mathcal{B}^f)_{\text{experiment}}}{(\sigma_i \times \mathcal{B}^f)_{\text{SM}}}$$

Simplified Template Cross Section (STXS)

STXS data is available from Run 2:

- Better control on errors and their correlation
- Separate bins for new physics searches
- Binning evolves in stages: stage 0, 1.0, 1.1, 1.2, ...

STXS

	Production bin	Cross-se	$(\boldsymbol{\sigma}\cdot\boldsymbol{\mathcal{B}})/(\boldsymbol{\sigma}\cdot\boldsymbol{\mathcal{B}})_{\mathrm{SM}}$									
		SM expected	Observed	Observed								
	Production Mode Stage bins, $ y_H < 2.5$											
ss	ggF	1.17 ± 0.08	$1.12\pm 0.12\pm 0.04\pm 0.03$	$0.96 \pm 0.10 \pm 0.03 \pm 0.03$								
	VBF	0.0920 ± 0.0020	$0.11 \pm 0.04 \pm 0.01 \pm 0.01$	$1.21 \pm 0.44 \substack{+0.13 \\ -0.08 } \substack{+0.07 \\ -0.05}$								
	VH	$0.0524^{+0.0027}_{-0.0049}$	$0.075^{+0.059}_{-0.047} {}^{+0.011}_{-0.007} {}^{+0.013}_{-0.009}$	1.44 ^{+1.13} +0.21 +0.24 -0.90 -0.14 -0.17								
	пH	$0.0154^{+0.0010}_{-0.0013}$	$0.026^{+0.026}_{-0.017}\pm0.002\pm0.002$	$1.7^{+1.7}_{-1.2}\pm0.2\pm0.2$								
	Reduced Stage-1.1 bins, y _H < 2.5											
xs	gg2H-0 j - p_T^H -Low	0.176 ± 0.025	$0.17 \pm 0.05 \pm 0.02$	$0.96 \pm 0.30 \pm 0.09$								
	gg2H-0 j - p_T^H -High	0.55 ± 0.04	$0.63 \pm 0.09 \pm 0.06$	$1.15 \pm 0.17 \pm 0.11$								
	gg2H-1 j - p_T^H -Low	0.172 ± 0.025	$0.05 \pm 0.07 \substack{+0.04 \\ -0.06}$	$0.3 \pm 0.4 \substack{+0.2 \\ -0.3}$								
	gg2H-1 <i>j</i> -p _T ^H -Med	0.119 ± 0.018	$0.17 \pm 0.05 \ {}^{+0.02}_{-0.01}$	$1.4\pm0.4\pm0.1$								
	gg2H-1 <i>j-p</i> _T ^H -High	0.020 ± 0.004	$0.009^{+0.016}_{-0.011}\pm0.002$	$0.5^{+0.8}_{-0.6} \pm 0.1$								
	gg2H-2 <i>j</i>	0.127 ± 0.027	$0.04 \pm 0.07 \pm 0.04$	$0.3\pm0.5\pm0.3$								
	$gg2H-p_T^H$ -High	0.015 ± 0.004	$0.038^{+0.021}_{-0.016}~^{+0.003}_{-0.002}$	$2.5^{+1.3}_{-1.0}$ $^{+0.2}_{-0.1}$								
	qq2Hqq-VH	$0.0138^{+0.0004}_{-0.0006}$	$0.021^{+0.037}_{-0.029} {}^{+0.009}_{-0.006}$	$1.5^{+2.7}_{-2.1} {}^{+0.6}_{-0.4}$								
	qq2Hqq-VBF	$0.1076^{+0.0024}_{-0.0035}$	$0.15 \pm 0.05 \ {}^{+0.02}_{-0.01}$	$1.4 \pm 0.5 \substack{+0.2 \\ -0.1}$								
	qq2Hqq-BSM	0.00420 ± 0.00018	$0.0005^{+0.0079}_{-0.0047}\pm0.008$	$0.1^{+1.9}_{-1.1}\pm0.2$								
	VH-Lep	0.0164 ± 0.0004	$0.022^{+0.028}_{-0.018} {}^{+0.003}_{-0.001}$	$1.3^{+1.7}_{-1.1}$ $^{+0.2}_{-0.1}$								
	ttH	$0.0154^{+0.0010}_{-0.0013}$	$0.025^{+0.026}_{-0.017}$ $^{+0.005}_{-0.003}$	$1.6^{+1.7}_{-1.1} \stackrel{+0.3}{_{-0.2}}$								

Credit: ATLAS HIGG-2018-28

Lilith

Light Likelihood Fit for the Higgs^{1,2}

- A python package for constraining Higgs-coupling parameters of a BSM model (Kappa, SMEFT, 2HDM, ...).
- Current database: SS from publications of ATLAS, CMS, Tevatron.
- Statistical method: maximal likelihood using variable Gaussian distributions.
- On-going work:
 - Extended the database to include STXS data.
 - Include correlations of theoretical errors.
 - Implement SMEFT parametrizations.

¹Bernon and Dumont *Eur. Phys. J. C* 75 (2015) 440. [Lilith-1.1]

²S. Kraml, T.Q. Loc, D.T. Nhung, and L.D. Ninh SciPost Phys. 7 (2019) 052. [Lilith-2.0]

Results using SS data

STXS data

Measurement mation $((-x,y,B,-),(B^{SM}))$	Value	Uncertainty [pb]			SM prediction
Measurement region $((\sigma_1 \times B_{ZZ})/B_{ZZ})$	[pb]	Total	Stat.	Syst.	[pb]
$gg \rightarrow H$, 0-jet	35.5	+ 5.0	+ 4.4	+ 2.5 - 2.2	27.5 ± 1.8
$gg \rightarrow H$, 1-jet, $p_T^H < 60 \text{ GeV}$	3.7	+ 2.8 - 2.7	+ 2.4 - 2.3	+ 1.5 - 1.4	6.6 ± 0.9
$gg \rightarrow H$, 1-jet, $60 \le p_T^H < 120 \text{ GeV}$	4.0	+ 1.7 - 1.5	+ 1.5 - 1.4	+ 0.8 - 0.7	4.6 ± 0.6
$gg \rightarrow H$, 1-jet, $120 \le p_{\rm T}^H < 200 \text{ GeV}$	1.0	+ 0.6 - 0.5	± 0.5	+ 0.3 - 0.2	0.75 ± 0.15
$gg \rightarrow H, \ge 1$ -jet, $p_T^H \ge 200 \text{ GeV}$	1.2	+ 0.5 - 0.4	± 0.4	+ 0.3 - 0.2	0.59 ± 0.16
$gg \rightarrow H, \ge 2$ -jet, $p_{\mathrm{T}}^{H} < 200 \text{ GeV}$	5.4	+ 2.7 - 2.5	+ 2.2 - 2.1	+ 1.5 - 1.3	4.8 ± 1.0
$qq \rightarrow Hqq$, VBF topo + Rest	6.4	+ 1.8 - 1.5	+ 1.5 - 1.3	+ 1.1 - 0.9	4.07 ± 0.09
$qq \rightarrow Hqq$, VH topo	-0.06	+ 0.70 - 0.58	+ 0.68 - 0.57	+ 0.16 - 0.12	0.515 ± 0.019
$qq \rightarrow Hqq, \ p_{\rm T}^{j} \ge 200 \ {\rm GeV}$	-0.21	± 0.33	+ 0.29 - 0.28	+ 0.15 - 0.16	0.220 ± 0.005
$qq \rightarrow H\ell\nu, \ p_{\rm T}^V < 250 \text{ GeV}$	0.90	+ 0.49 - 0.40	+ 0.40 - 0.33	+ 0.28 - 0.22	0.393 ± 0.009
$qq \rightarrow H\ell\nu, \ p_{\rm T}^V \ge 250 \ {\rm GeV}$	0.023	+ 0.028 - 0.015	+ 0.018 - 0.012	+ 0.022 - 0.008	0.0122 ± 0.0006
$gg/qq \rightarrow H\ell\ell, \ p_{\rm T}^V < 150 \ {\rm GeV}$	0.17	+ 0.25 - 0.31	± 0.20	+ 0.15 - 0.24	0.200 ± 0.008
$gg/qq \rightarrow H\ell\ell, \ 150 \le p_{\rm T}^V < 250 \text{ GeV}$	0.028	+ 0.042 - 0.037	+ 0.033 - 0.029	+ 0.026 - 0.023	0.0324 ± 0.0041
$gg/qq \rightarrow H\ell\ell, \ p_{\rm T}^V \ge 250 \text{ GeV}$	0.024	+ 0.025 - 0.013	+ 0.016 - 0.011	+ 0.020 - 0.006	0.0083 ± 0.0009
ttH+tH	0.84	+ 0.23 - 0.19	+ 0.18 - 0.16	+ 0.14 - 0.11	0.59 + 0.04 - 0.05
Pronching fraction ratio	Value	Uncertainty			SM musdiation
Branching fraction ratio		Total	Stat.	Syst.	Sivi prediction
$B_{\gamma\gamma}/B_{ZZ}$	0.074	+ 0.012 - 0.010	+ 0.010 - 0.009	+ 0.006 - 0.005	0.0860 ± 0.0010
$B_{b\bar{b}}/B_{ZZ}$	14	+ 8 - 6	+ 5 - 4	+ 6 - 5	22.0 ± 0.5
B_{WW}/B_{ZZ}	7.0	+ 1.5 - 1.3	+ 1.1 - 0.9	+ 1.0 - 0.9	$8.15 \pm < 0.01$
$B_{\tau\tau}/B_{ZZ}$	2.1	+ 0.7 - 0.6	± 0.5	+ 0.5 - 0.3	2.37 ± 0.02

Source: ATLAS HIGG-2018-57

Likelihood:

$$-2\log L = (\hat{x} - x)^T \cdot C^{-1} \cdot (\hat{x} - x),$$

where:

- $\hat{x}^p = (\sigma_i^p \times \mathcal{B}_Y)_{exp}$ [best fits],
- $x^p = \mu_i^Y \times (\sigma^p \times \mathcal{B}_Y)_{SM}$ [model prediction],
- $C = C_{\text{ex}} + C_{\text{th}}$ [covariance].

Covariances:

$$C_{\mathrm{ex}} = \Sigma_{\mathrm{ex}} \cdot \rho_{\mathrm{ex}} \cdot \Sigma_{\mathrm{ex}},$$

 $C_{\mathrm{th}} = \Sigma_{\mathrm{th}} \cdot \rho_{\mathrm{th}} \cdot \Sigma_{\mathrm{th}}$

7

STXS data

Manuformant ration $((\sigma \times P_{})/P^{SM})$	Value	Uncertainty [pb]		SM prediction	
weasurement region $((07 \times BZZ)/BZZ)$	[pb]	Total	Stat.	Syst.	[pb]
$gg \rightarrow H$, 0-jet	35.5	+ 5.0	+ 4.4 - 4.1	+ 2.5 - 2.2	27.5 ± 1.8
$gg \rightarrow H$, 1-jet, $p_T^H < 60 \text{ GeV}$	3.7	+ 2.8 - 2.7	+ 2.4 - 2.3	+ 1.5 - 1.4	6.6 ± 0.9
$gg \rightarrow H$, 1-jet, $60 \le p_{\rm T}^H < 120 \text{ GeV}$	4.0	+ 1.7 - 1.5	+ 1.5 - 1.4	+ 0.8 - 0.7	4.6 ± 0.6
$gg \rightarrow H$, 1-jet, $120 \le p_{\mathrm{T}}^{H} < 200 \text{ GeV}$	1.0	+ 0.6 - 0.5	± 0.5	+ 0.3 - 0.2	0.75 ± 0.15
$gg \rightarrow H, \ge 1$ -jet, $p_T^H \ge 200 \text{ GeV}$	1.2	+ 0.5 - 0.4	± 0.4	+ 0.3 - 0.2	0.59 ± 0.16
$gg \rightarrow H, \ge 2$ -jet, $p_{\mathrm{T}}^{H} < 200 \text{ GeV}$	5.4	+ 2.7 - 2.5	+ 2.2 - 2.1	+ 1.5 - 1.3	4.8 ± 1.0
$qq \rightarrow Hqq$, VBF topo + Rest	6.4	+ 1.8 - 1.5	+ 1.5 - 1.3	+ 1.1 - 0.9	4.07 ± 0.09
$qq \rightarrow Hqq$, VH topo	-0.06	+ 0.70 - 0.58	+ 0.68 - 0.57	+ 0.16 - 0.12	0.515 ± 0.019
$qq \rightarrow Hqq, \ p_{\rm T}^j \ge 200 \ {\rm GeV}$	-0.21	± 0.33	+ 0.29 - 0.28	+ 0.15 - 0.16	0.220 ± 0.005
$qq \rightarrow H\ell\nu, p_{\rm T}^V < 250 \text{ GeV}$	0.90	+ 0.49 - 0.40	+ 0.40 - 0.33	+ 0.28 - 0.22	0.393 ± 0.009
$qq \rightarrow H\ell\nu, p_T^V \ge 250 \text{ GeV}$	0.023	+ 0.028 - 0.015	+ 0.018 - 0.012	+ 0.022 - 0.008	0.0122 ± 0.0006
$gg/qq \rightarrow H\ell\ell, \ p_{\rm T}^V < 150 \text{ GeV}$	0.17	+ 0.25 - 0.31	± 0.20	+ 0.15 - 0.24	0.200 ± 0.008
$gg/qq \rightarrow H\ell\ell, \ 150 \leq p_{\rm T}^V < 250 \ {\rm GeV}$	0.028	+ 0.042 - 0.037	+ 0.033 - 0.029	+ 0.026 - 0.023	0.0324 ± 0.0041
$gg/qq \rightarrow H\ell\ell, \ p_{\rm T}^V \ge 250 \text{ GeV}$	0.024	+ 0.025 - 0.013	+ 0.016 - 0.011	+ 0.020 - 0.006	0.0083 ± 0.0009
ttH+tH	0.84	+ 0.23 - 0.19	+ 0.18 - 0.16	+ 0.14 - 0.11	0.59 + 0.04 - 0.05
Deputing function action	Value	Uncertainty		CM anadiation	
Branching fraction ratio		Total	Stat.	Syst.	Sivi prediction
$B_{\gamma\gamma}/B_{ZZ}$	0.074	+ 0.012 - 0.010	+ 0.010 - 0.009	+ 0.006	0.0860 ± 0.0010
$B_{b\bar{b}}/B_{ZZ}$	14	+ 8 - 6	+ 5 - 4	+ 6 - 5	22.0 ± 0.5
B_{WW}/B_{ZZ}	7.0	+ 1.5 - 1.3	+ 1.1 - 0.9	+ 1.0 - 0.9	$8.15 \pm < 0.01$
$B_{\tau\tau}/B_{ZZ}$	2.1	+ 0.7 - 0.6	± 0.5	+ 0.5	2.37 ± 0.02

Source: ATLAS HIGG-2018-57

Likelihood:

$$-2\log L = (\hat{x} - x)^T \cdot C^{-1} \cdot (\hat{x} - x),$$

where:

- $\hat{x}^p = (\sigma^p_i \times \mathcal{B}_Y)_{exp}$ [best fits],
- $x^p = \mu_i^Y \times (\sigma^p \times \mathcal{B}_Y)_{SM}$ [model prediction],
- $C = C_{\text{ex}} + C_{\text{th}}$ [covariance].

Covariances:

$$\begin{split} C_{\text{ex}} &= \Sigma_{\text{ex}} \cdot \rho_{\text{ex}} \cdot \Sigma_{\text{ex}}, \\ C_{\text{th}} &= \Sigma_{\text{th}} \cdot \rho_{\text{th}} \cdot \Sigma_{\text{th}} \end{split}$$

Experiment and theory correlations

correlation of exp. errors

- ATLAS and CMS dont provide the theoretical correlations with their papers.
- It's not easy, if not impossible, for theorists to calculate them.

STXS vs. SS

STXS data gives better results than SS data, as expected!

Theoretical correlations (ggF only)

Need also corr. between ggF and VBF, ttH, ...

Effects of theoretical correlations (ggF only)

Discrepancies due to missing theoretical correlations? Need help from exp colleagues!

Variable Gaussian vs. Gaussian

Likelihood

(

V

$$-2 \log L = (\hat{x} - x)^T \cdot C^{-1} \cdot (\hat{x} - x)$$
$$C = \Sigma \cdot \rho \cdot \Sigma,$$
$$\Sigma = \mathsf{diag}(\sigma_1, \sigma_2, \ldots)$$
Gaussian:

$$\sigma_i = (\sigma_i^+ + \sigma_i^-)/2$$

ariable Gaussian (Barlow (2004)

$$\sigma_i = \sqrt{\sigma_i^+ \sigma_i^- + (\sigma_i^+ - \sigma_i^-)(\hat{x} - x)}$$
$$= f(C_V, C_F)$$

Variable Gaussian is better for asymmetric errors !

SMEFT

$$\begin{split} \mathcal{L}_{\mathsf{SMEFT}} &= \mathcal{L}_{\mathsf{SM}} + \sum_{i} \frac{c_{i}^{(D=6)}}{\Lambda^{2}} Q_{i}^{(D=6)} + \sum_{i} \frac{c_{i}^{(D=8)}}{\Lambda^{4}} Q_{i}^{(D=8)} + \dots, \\ \sigma^{p} \propto \left| \mathcal{M}_{\mathsf{SMEFT}}^{p} \right|^{2} &= \left| \mathcal{M}_{\mathsf{SM}}^{p} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{M}_{i}^{p} \right|^{2} \\ &\Rightarrow \sigma_{\mathsf{SM}}^{p} \left(1 + \sum_{i} A_{i}^{p} c_{i} + \sum_{ij} B_{ij}^{p} c_{i} c_{j} \right), \end{split}$$

$$\mathcal{B}^{f} = \frac{\Gamma^{f}}{\Gamma^{\text{total}}} = \mathcal{B}^{f}_{\text{SM}} \cdot \frac{1 + \sum_{i} A^{f}_{i} c_{i} + \sum_{ij} B^{f}_{ij} c_{i} c_{j}}{1 + \sum_{f} \left(\sum_{i} A^{f}_{i} c_{i} + \sum_{ij} B^{f}_{ij} c_{i} c_{j} \right)}.$$

$$\frac{A}{A_{\rm SM}} = \alpha_0 + (\alpha_1)^2 \cdot \left[\alpha_2 + \sum_i \delta_i \cdot (c_i + \beta_i)^2 + \sum_{\substack{ij\\i \neq j}} \delta_{(i,j)} \cdot c_i c_j + \delta_{\substack{(i,j,k)\\i \neq j \neq k}} \cdot c_i c_j c_k \right]^{-1}$$

SMEFT fit results

Lilith application: $1/\Lambda^4$ effects

$$\begin{split} \sigma^p = \left| \mathcal{M}_{\mathsf{SM}}^p + \frac{1}{\Lambda^2} \sum_i c_i^{(D6)} \mathcal{M}_i^{D6,p} \right. \\ \left. + \frac{1}{\Lambda^4} \sum_j c_j^{(D8)} \mathcal{M}_j^{D8,p} + \dots \end{split}$$

ATLAS HIGG-2018-28: only D6²

Large $1/\Lambda^4$ effects ! \longrightarrow need D8 operators.

Summary

- Lilith: a python tool to use ATLAS and CMS Higgs SS and STXS data to constrain Higgs-coupling parameters.
- Information on the correlation of SM errors between different processes is still lacking.
- SMEFT: Parametrizations are crucial. ATLAS and CMS, please provide this information in your papers. We need this to validate our results.

Acknowledgments:

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2020.17.

Thank you for your attention!