Toward global fits using Higgs STXS data with Lilith

Le Duc Ninh

Phenikaa University, Hanoi, Vietnam
Windows on the Universe, 9 August 2023, Quy Nhon, Vietnam

collaborators: Le Van Dung, Sabine Kraml, Tran Quang Loc,
Nguyen Dang Bao Nhi

Higgs production processes at the LHC

a) $\mathrm{ggF}(87 \%)$

d) $\mathrm{ttH}(1 \%)$

b) VBF (7\%)

c) $\mathrm{VH}(4 \%)$

e) $\mathrm{tH}(<0.1 \%)$

Higgs decays \& signal strength (SS)

a) $H \rightarrow f \bar{f}$
b) $H \rightarrow$

c) $H \rightarrow \gamma \gamma / Z \gamma$

Mean lifetime:
$\approx 2 \times 10^{-22} \mathrm{~s}$

Signal strength:

$$
\mu_{i}^{f}=\frac{\left(\sigma_{i} \times \mathcal{B}^{f}\right)_{\text {experiment }}}{\left(\sigma_{i} \times \mathcal{B}^{f}\right)_{\mathrm{SM}}}
$$

Simplified Template Cross Section (STXS)

STXS data is available from

Run 2:

- Better control on errors and their correlation
- Separate bins for new physics searches
- Binning evolves in stages: stage 0, 1.0, 1.1, 1.2, ...

Credit: ATLAS HIGG-2018-28

Lilith

Light Likelihood Fit for the Higgs ${ }^{1,2}$

- A python package for constraining Higgs-coupling parameters of a BSM model (Kappa, SMEFT, 2HDM, ...).
- Current database: SS from publications of ATLAS, CMS, Tevatron.
- Statistical method: maximal likelihood using variable Gaussian distributions.
- On-going work:
- Extended the database to include STXS data.
- Include correlations of theoretical errors.
- Implement SMEFT parametrizations.

[^0]
Results using SS data

STXS data

Measurement region $\left(\left(\sigma_{i} \times B_{Z Z}\right) / B_{Z Z}^{S M}\right)$	Value [pb]	Uncertainty [pb]			SM prediction
		Total	Stat.	Syst.	[pb]
$g g \rightarrow H, 0$-jet	35.5	$\begin{array}{r} +5.0 \\ -4.7 \end{array}$	$\begin{aligned} & +4.4 \\ & -4.1 \end{aligned}$	$\begin{aligned} & +2.5 \\ & -2.2 \end{aligned}$	27.5 ± 1.8
$g g \rightarrow H, 1$-jet, $p_{\mathrm{T}}^{H}<60 \mathrm{GeV}$	3.7	+2.8 -2.7	+2.4 -2.3	+1.5 +1.4	6.6 ± 0.9
$g g \rightarrow H, 1$-jet, $60 \leq p_{\mathrm{T}}^{H}<120 \mathrm{GeV}$	4.0	+1.7 -1.5	+1.5 -1.4	+0.8 -0.7	4.6 ± 0.6
$g g \rightarrow H, 1$-jet, $120 \leq p_{\mathrm{T}}^{H}<200 \mathrm{GeV}$	1.0	+0.6 -0.5 +0.5	± 0.5	+0.3 -0.2	0.75 ± 0.15
$g g \rightarrow H, \geq 1$-jet, $p_{\mathrm{T}}^{H} \geq 200 \mathrm{GeV}$	1.2	+0.5 -0.4	± 0.4	+0.3 -0.2	0.59 ± 0.16
$g g \rightarrow H, \geq 2$-jet, $p_{\mathrm{T}}^{H}<200 \mathrm{GeV}$	5.4	+2.7 +2.5	+2.2 +2.1	+1.5 +1.3	4.8 ± 1.0
$q q \rightarrow H q q, ~ V B F$ topo + Rest	6.4	+1.8 +1.5	+ 1.5 +1.3	+ 1.1 +0.9	4.07 ± 0.09
$q q \rightarrow H q q, V H$ topo	-0.06	$\begin{array}{r} +0.70 \\ +0.58 \end{array}$	+0.68 +0.57 +0.08	$\begin{array}{r} +0.16 \\ +0.12 \end{array}$	0.515 ± 0.019
$q q \rightarrow H q q, p_{\mathrm{T}}^{j} \geq 200 \mathrm{GeV}$	-0.21	± 0.33	+0.29 +0.28 +0.29	+0.15	0.220 ± 0.005
$q q \rightarrow H \ell v, p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$	0.90	$\begin{array}{r} +0.49 \\ +0.40 \end{array}$	$\begin{array}{r} +0.40 \\ +0.33 \end{array}$	$\begin{array}{r} +0.28 \\ +0.22 \end{array}$	0.393 ± 0.009
$q q \rightarrow H \ell v, p_{\mathrm{T}}^{v} \geq 250 \mathrm{GeV}$	0.023	$\begin{array}{r} +0.028 \\ +0.015 \end{array}$	$\begin{array}{r} +0.018 \\ +0.012 \end{array}$	$\begin{array}{r} +0.022 \\ +0.008 \\ -0.00 \end{array}$	0.0122 ± 0.0006
$g g / q q \rightarrow H \ell \ell, p_{\mathrm{T}}^{V}<150 \mathrm{GeV}$	0.17	$\begin{array}{r} +0.25 \\ +0.31 \end{array}$	± 0.20	$\begin{array}{r} +0.15 \\ +0.24 \end{array}$	0.200 ± 0.008
$g \mathrm{~g} / q q \rightarrow$ He¢, $150 \leq p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$	0.028	$\begin{aligned} & +0.042 \\ & { }^{+0.037} \end{aligned}$	$\begin{array}{r} +0.033 \\ +0.029 \end{array}$	$\begin{aligned} & +0.026 \\ & +0.023 \end{aligned}$	0.0324 ± 0.0041
$g g / q q \rightarrow H \ell \ell, p_{\mathrm{T}}^{V} \geq 250 \mathrm{GeV}$	0.024	$\begin{aligned} & +0.025 \\ & { }_{-0.013} \end{aligned}$	$\begin{aligned} & +0.016 \\ & { }_{0}^{0.0 .011} \end{aligned}$	$\begin{array}{r} +0.020 \\ +0.006 \end{array}$	0.0083 ± 0.0009
$t \bar{t} H+t H$	0.84	$\begin{aligned} & +0.23 \\ & +0.19 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.18 \\ +0.16 \\ \hline \end{array}$	$\begin{aligned} & +0.14 \\ & +0.11 \\ & \hline \end{aligned}$	${ }^{0.59}{ }_{-0.05}^{+0.04}$
Branching fraction ratio	Value	Uncertainty			SM prediction
		Total		Syst.	SMprediction
$B_{\gamma \gamma} / B_{Z Z}$	0.074	$\begin{aligned} & +0.012 \\ & +0.010 \end{aligned}$	$\begin{array}{r} +0.010 \\ +0.009 \end{array}$	$\begin{aligned} & +0.006 \\ & +0.005 \end{aligned}$	0.0860 ± 0.0010
$B_{b b} / B_{Z Z}$	14	+8 -6	$\begin{aligned} & +5 \\ & +4 \end{aligned}$	$\begin{aligned} & +6 \\ & +5 \end{aligned}$	22.0 ± 0.5
$B_{W W} / B_{Z Z}$	7.0	+1.5 -1.3 +0.6	+1.1 -0.9	$\begin{array}{r} 1.0 \\ +\quad 0.9 \end{array}$	$8.15 \pm<0.01$
$B_{\tau \tau} / B_{Z Z}$	2.1	$\begin{array}{r} +0.7 \\ +0.6 \\ \hline \end{array}$	± 0.5	$\begin{array}{r} +0.5 \\ +0.5 \\ -0.3 \\ \hline \end{array}$	2.37 ± 0.02

Source: ATLAS HIGG-2018-57

where.
 [model prediction], [covariance].

STXS data

Measurement region $\left(\left(\sigma_{i} \times B_{Z Z}\right) / B_{Z Z}^{S M}\right)$	Value [pb]	Uncertainty [pb]			SM prediction [pb]
		Total	Stat.	Syst.	
$g g \rightarrow H$, 0-jet	35.5	+5.0 -4.7 +8.	$\begin{aligned} & +4.4 \\ & -4.1 \end{aligned}$	$\begin{array}{r} +2.5 \\ +2.2 \end{array}$	27.5 ± 1.8
$g g \rightarrow H, 1$-jet, $p_{\mathrm{T}}^{H}<60 \mathrm{GeV}$	3.7	+2.8 -2.7	+2.4 -2.3	+ 1.5 -1.4	6.6 ± 0.9
$g g \rightarrow H, 1$-jet, $60 \leq p_{\mathrm{T}}^{H}<120 \mathrm{GeV}$	4.0	+1.7 +1.5	$\begin{aligned} & 1.5 \\ & +1.4 \end{aligned}$	$\begin{array}{r} 1.7 \\ +0.8 \\ -0.7 \end{array}$	4.6 ± 0.6
$g g \rightarrow H, 1$-jet, $120 \leq p_{\mathrm{T}}^{H}<200 \mathrm{GeV}$	1.0	+0.6 -0.5	± 0.5	+0.3 +0.2	0.75 ± 0.15
$g g \rightarrow H, \geq 1$-jet, $p_{\mathrm{T}}^{H} \geq 200 \mathrm{GeV}$	1.2	+0.5 +0.4	± 0.4	+0.3 +0.2	0.59 ± 0.16
$g g \rightarrow H, \geq 2$-jet, $p_{\mathrm{T}}^{H}<200 \mathrm{GeV}$	5.4	+2.7 +2.5	$\begin{aligned} & +2.2 \\ & -2.1 \end{aligned}$	+1.5 +1.3	4.8 ± 1.0
$q q \rightarrow H q q, ~ V B F$ topo + Rest	6.4	+1.8 +1.5	+1.5 -1.3	+ 1.1 -0.9	4.07 ± 0.09
$q q \rightarrow H q q, V H$ topo	-0.06	+0.70 +0.58 +0.3	+0.68 +0.57 +0.	+0.16 +0.12	0.515 ± 0.019
$q q \rightarrow H q q, p_{\mathrm{T}}^{j} \geq 200 \mathrm{GeV}$	-0.21	± 0.33	+0.62 +0.29 +0.28	+0.16 +0.15 +0.16	0.220 ± 0.005
$q q \rightarrow H \ell v, p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$	0.90	$\begin{aligned} & +0.49 \\ & +0.40 \end{aligned}$	$\begin{aligned} & +0.40 \\ & -0.33 \end{aligned}$	$\begin{array}{r} +0.28 \\ +0.28 \\ -0.22 \end{array}$	0.393 ± 0.009
$q q \rightarrow H \ell v, p_{\mathrm{T}}^{V} \geq 250 \mathrm{GeV}$	0.023	$\begin{array}{r} +0.028 \\ +0.015 \end{array}$	$\begin{aligned} & +0.018 \\ & +0.012 \end{aligned}$	$\begin{aligned} & +0.022 \\ & -0.008 \end{aligned}$	0.0122 ± 0.0006
$g g / q q \rightarrow H \ell \ell, p_{\mathrm{T}}^{V}<150 \mathrm{GeV}$	0.17	$\begin{aligned} & +0.25 \\ & +0.31 \end{aligned}$	± 0.20	+ 0.15 +0.24 +0.0	0.200 ± 0.008
$g g / q q \rightarrow H \ell \ell, 150 \leq p_{\mathrm{T}}^{V}<250 \mathrm{GeV}$	0.028	$\begin{array}{r} +0.042 \\ +0.042 \\ -0.037 \end{array}$	$\begin{aligned} & +0.033 \\ & +0.029 \end{aligned}$	$\begin{array}{r} +0.026 \\ +0.023 \\ -0.023 \end{array}$	0.0324 ± 0.0041
$g g / q q \rightarrow H \ell \ell, p_{\mathrm{T}}^{V} \geq 250 \mathrm{GeV}$	0.024	$\begin{array}{r} 0.017 \\ +0.025 \\ -0.013 \end{array}$	$\begin{aligned} & +0.016 \\ & +0.011 \end{aligned}$	$\begin{aligned} & +0.020 \\ & +0.006 \end{aligned}$	0.0083 ± 0.0009
$t \bar{t} H+t H$	0.84	$\begin{aligned} & +0.23 \\ & +\quad 0.19 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.18 \\ +0.16 \\ \hline \end{array}$	$\begin{aligned} & +0.14 \\ & +0.11 \\ & \hline \end{aligned}$	0.59 ${ }_{-0.05}^{+0.04}$
Branching fraction ratio	Value	Uncertainty			
		Total	Stat.	Syst.	
$B_{\gamma \gamma} / B_{Z Z}$	0.074	$\begin{aligned} & +0.012 \\ & +0.010 \end{aligned}$	$\begin{aligned} & +0.010 \\ & +0.009 \end{aligned}$	$\begin{aligned} & +0.006 \\ & +0.005 \end{aligned}$	0.0860 ± 0.0010
$B_{b b} / B_{Z Z}$	14	+8 +6	$\begin{aligned} & +5 \\ & -4 \end{aligned}$	$\begin{aligned} & +6 \\ & +5 \end{aligned}$	22.0 ± 0.5
$B_{W W} / B_{Z Z}$	7.0	$\begin{array}{r} +1.5 \\ +1.5 \\ -1.3 \end{array}$	$\begin{array}{r} +1.1 \\ +0.9 \\ -0.9 \end{array}$	$\begin{array}{r} 1.0 \\ +\quad 1.0 \\ -0.9 \end{array}$	$8.15 \pm<0.01$
$B_{\tau \tau} / B_{Z Z}$	2.1	$\begin{aligned} & +0.7 \\ & -0.6 \\ & \hline \end{aligned}$	± 0.5	$\begin{aligned} & +0.5 \\ & -0.3 \\ & \hline \end{aligned}$	2.37 ± 0.02

Source: ATLAS HIGG-2018-57

Likelihood:

$$
-2 \log L=(\hat{x}-x)^{T} \cdot C^{-1} \cdot(\hat{x}-x)
$$

where:

- $\hat{x}^{p}=\left(\sigma_{i}^{p} \times \mathcal{B}_{Y}\right)_{\exp }$ [best fits],
- $x^{p}=\mu_{i}^{Y} \times\left(\sigma^{p} \times \mathcal{B}_{Y}\right)_{\mathrm{SM}}$ [model prediction],
- $C=C_{\text {ex }}+C_{\text {th }}$ [covariance].

Covariances:

$C_{\text {ex }}=\Sigma_{\text {ex }} \cdot \rho_{\text {ex }} \cdot \Sigma_{\text {ex }}$,
$C_{\mathrm{th}}=\Sigma_{\mathrm{th}} \cdot \rho_{\mathrm{th}} \cdot \Sigma_{\mathrm{th}}$

Experiment and theory correlations
 correlation of exp. errors

correlation of theoretical errors (ggF) corr2017, 9 uncertainty sources

- ATLAS and CMS dont provide the theoretical correlations with their papers.
- It's not easy, if not impossible, for theorists to calculate them.

STXS vs. SS

Lilith 2.2 - ATLAS HIGG-2018-57

Lilith 2.2 - ATLAS HIGG-2018-57

- STXS data gives better results than SS data, as expected!

Theoretical correlations (ggF only)

corr2017, 9 uncertainty sources

corrSTXS, 9 uncertainty sources

corrJVE, 7 uncertainty sources

corrWG1, 8 uncertainty sources

Need also corr. between ggF and VBF, ttH, ...

Effects of theoretical correlations (ggF only)

Lilith 2.2 - ATLAS HIGG-2020-16

Lilith 2.2 - ATLAS HIGG-2020-16

Lilith 2.2 - ATLAS HIGG-2020-16

Lilith 2.2 - ATLAS HIGG-2020-16

Discrepancies due to missing theoretical correlations? Need help from exp colleagues!

Variable Gaussian vs. Gaussian

Likelihood

(a) Gaussian

(b) variable Gaussian

$$
\begin{aligned}
-2 \log L & =(\hat{x}-x)^{T} \cdot C^{-1} \cdot(\hat{x}-x) \\
C & =\Sigma \cdot \rho \cdot \Sigma \\
\Sigma & =\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots\right)
\end{aligned}
$$

Gaussian:

$$
\sigma_{i}=\left(\sigma_{i}^{+}+\sigma_{i}^{-}\right) / 2
$$

Variable Gaussian [Barlow (2004)]:

$$
\begin{aligned}
\sigma_{i} & =\sqrt{\sigma_{i}^{+} \sigma_{i}^{-}+\left(\sigma_{i}^{+}-\sigma_{i}^{-}\right)(\hat{x}-x)} \\
& =f\left(C_{V}, C_{F}\right)
\end{aligned}
$$

- Variable Gaussian is better for asymmetric errors !

SMEFT

$$
\begin{gathered}
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(D=6)}}{\Lambda^{2}} Q_{i}^{(D=6)}+\sum_{i} \frac{c_{i}^{(D=8)}}{\Lambda^{4}} Q_{i}^{(D=8)}+\ldots, \\
\sigma^{p} \propto\left|\mathcal{M}_{\mathrm{SMEFT}}^{p}\right|^{2}=\left|\mathcal{M}_{\mathrm{SM}}^{p}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{M}_{i}^{p}\right|^{2} \\
\Rightarrow \sigma_{\mathrm{SM}}^{p}\left(1+\sum_{i} A_{i}^{p} c_{i}+\sum_{i j} B_{i j}^{p} c_{i} c_{j}\right) \\
\mathcal{B}^{f}=\frac{\Gamma^{f}}{\Gamma^{\text {total }}}=\mathcal{B}_{\mathrm{SM}}^{f} \cdot \frac{1+\sum_{i} A_{i}^{f} c_{i}+\sum_{i j} B_{i j}^{f} c_{i} c_{j}}{1+\sum_{f}\left(\sum_{i} A_{i}^{f} c_{i}+\sum_{i j} B_{i j}^{f} c_{i} c_{j}\right)} \\
\frac{A}{A_{\mathrm{SM}}}=\alpha_{0}+\left(\alpha_{1}\right)^{2} \cdot\left[\alpha_{2}+\sum_{i} \delta_{i} \cdot\left(c_{i}+\beta_{i}\right)^{2}+\sum_{\substack{i j \\
i \neq j}} \delta_{(i, j)} \cdot c_{i} c_{j}+\delta_{\substack{(i, j, k) \\
i \neq j \neq k}} \cdot c_{i} c_{j} c_{k}\right]^{-1}
\end{gathered}
$$

SMEFT fit results

Lilith application: $1 / \Lambda^{4}$ effects

$\sigma^{p}=\left\lvert\, \mathcal{M}_{\mathrm{SM}}^{p}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{(D 6)} \mathcal{M}_{i}^{D 6, p}\right.$

$$
+\frac{1}{\Lambda^{4}} \sum_{j} c_{j}^{(D 8)} \mathcal{M}_{j}^{D 8, p}+\left.\ldots\right|^{2}
$$

ATLAS HIGG-2018-28: only D6 ${ }^{2}$

Large $1 / \Lambda^{4}$ effects!
\longrightarrow need D8 operators.

Summary

- Lilith: a python tool to use ATLAS and CMS Higgs SS and STXS data to constrain Higgs-coupling parameters.
- Information on the correlation of SM errors between different processes is still lacking.
- SMEFT: Parametrizations are crucial. ATLAS and CMS, please provide this information in your papers. We need this to validate our results.
Acknowledgments:
This research is funded by the Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 103.01-2020.17.

Thank you for your attention!

[^0]: ${ }^{1}$ Bernon and Dumont Eur. Phys. J. C 75 (2015) 440. [Lilith-1.1]
 ${ }^{2}$ S. Kraml, T.Q. Loc, D.T. Nhung, and L.D. Ninh SciPost Phys. 7 (2019) 052. [Lilith-2.0]

