

in collaboration with M. Nojiri (KEK, Japan) & K. Sakurai (University of Warsaw, Poland)

Enhancing LHC searches for Dark Matter with Machine Learning

Rafał Masełek

Rencontres du Vietnam Quy Nhơn, 09-08-2023

Research founded by Polish National Science Centre grants: PRELUDIUM 20 2021/41/N/ST2/00972 GRIEG 2019/34/H/ST2/00707 SONATA BIS 7 2017/26/E/ST2/00135 and Polish National Agency for Academic Exchange grant: BEKKER 2022 BPN/BEK/2022/1/00253/DEC/1

DM

DM searches @ LHC — Monojet

Monojet channel = 1 or more hard jets recoiling against a missing transverse momentum and no isolated leptons

The idea

Monojet channel is challenging because we observe very similar jets for both signal and background

Analysis of jet substructure is needed

With Machine Learning we can analyse low-level data

ML can learn both local and global correlations

GOAL: Design new analysis using ML

Model choice — simplified SUSY scenario

We generate a pair of neutralinos (higgsino or wino) and allow for 1-2 extra partons in the final state...

... which led us to aim at constraining SUSY in squark vs neutralino mass plane.

... it is possible to have intermediate on-shell squarks produced...

Leeeeeeeeeeee

 \tilde{q}

Quy Nhơn 09-08-2023

 \tilde{v}

Q

Preselection $H_T > 1 \text{ TeV}$ p_T of the leading jet > 1 TeV p_T of the second jet > 610 GeV MT2 (stransverse mass) > 1300 GeV [arXiv:hep-ph/9906349] MET>1280 GeV

Preanalysis

signal samples

neutralino flavour	neutralino mass [GeV]	squark mass [TeV]	S (L=300 fb ⁻¹)	S/B	S/√(
higgsino	200	2.00	211	0.98	10
higgsino	300	2.00	132	0.61	7.
higgsino	400	2.00	106	0.49	5.
higgsino	500	2.00	90	0.42	5.
higgsino	600	2.00	80	0.37	4.
higgsino	300	2.25	160	0.75	8.
higgsino	300	2.50	182	0.85	9.
higgsino	300	2.75	184	0.86	9.
higgsino	300	3.00	63	0.29	3.
wino	200	2.00	208	0.97	10
wino	500	2.00	64	0.30	3.

Neural Network architecture

Local variables Based on ParticleNet Lite

Quy Nhơn 09-08-2023

Fuw

Evaluation — varying Higgsino mass

Quy Nhơn 09-08-2023

NN output (normalized)

Evaluation — varying Higgsino mass

NN output (normalized)

Evaluation — varying Higgsino mass

Evaluation — varying Higgsino mass **Classical ROC**

Evaluation — winos

Interpretation

Morskie Oko, Tatra, Poland

Interpretation — event-level distributions

Quy Nhơn 09-08-2023

Interpretation — calorimeter image

0 squarks 6,95%

squark 11,00%

2 squarks 82,05%

background-like

Quy Nhơn 09-08-2023

Interpretation — squark vs QCD jets

events w/o squarks

0 squarks 0,54% squar 12,68%

higgsino 300 GeV test sample

2 squarks 86,78%

signal-like

Interpretation — sensitivity to soft particles

signal and the background.

Settimate how much the current limits on neutralino and squark masses can be improved.

Understand better what allows the network to distinguish between the

Summary

Dark Matter can be searched at colliders, e.g. in the monojet channel.

©One of the DM candidates is neutralino in SUSY.

Searches in the monojet channel can be improved if ML techniques are used.

the sample.

We are trying to interpret the model: and uses both event-level and soft-particle information.

Final goal is to estimate how the limits on sparticles' masses will improve.

The method can be used also for other models contributing to the monojet channel

- [®]We used preselection and Neural Network based on ParticleNet applied to whole-event information.
- \otimes We are able to get 10-35% improvement over just preselection in terms of S/ $\sqrt{(S+B)}$, depending on

- Network seems to be able to recognize the number of jets, knows the characteristics of QCD jets,

 - Quy Nhơn 09-08-2023

Thank you for attention!

r.maselek@uw.edu.pl

Dolina Chochołowska, Pola photo by Piotr Kałuża

