Exotic Spectroscopy present status and prospects

* Exotic hadrons – everything beyond $q\overline{q}$ / qqq

Ivan Polyakov, CERN

30th Rencontres du Vietnam 9 August 2023

Outline

Broad review of the field

New results

Meaning for QCD

- QCD perfect at high energies, but not that successful at nuclei/hadron energies
- Spectroscopy the main tool for understanding QCD at this energy regime
 - $\rightarrow\,$ great advance from heavy quarks

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{u} & \textbf{d} & \textbf{s} \\ \hline \textbf{-2 MeV} & \hline \textbf{-5 MeV} & \hline \textbf{s} \\ \hline \textbf{-5 MeV} & \hline \textbf{MeV} & \textbf{-100} \\ \hline \textbf{MeV} & \textbf{-1.3} \\ \hline \textbf{GeV} & \hline \textbf{GeV} & \hline \textbf{t} \\ \hline \textbf{-1.3} \\ \hline \textbf{GeV} & \hline \textbf{GeV} & \hline \textbf{t} \\ \hline \textbf{-1.3} \\ \hline \textbf{GeV} & \hline \textbf{GeV} & \hline \textbf{t} \\ \hline \textbf{-1.3} \\ \hline \textbf{GeV} & \hline \textbf{t} \\ \hline \textbf{-1.3} \\ \hline \textbf{GeV} & \hline \textbf{t} \\ \hline \textbf{-1.3} \\ \hline \textbf{GeV} & \hline \textbf{t} \\ \hline \textbf{Heavy quarks} \\ \hline \textbf{from F.K.Guo} \end{array}$$

 All mesons (q₁q₂) and baryons (q₁q₂q₃) are discovered except for bcq & QQ'Q"

Progress limited by quark configurations studied

First exotic hadrons

later shown to be false

Trilling, 2006 (PDG)

- Were anticipated since 60's
- No success in light sector
 - First candidates for tetraquarks in 90's: $f_0(500), K_0^*(800), \dots$ later $D_{sJ}^*(2317), \dots$
 - Pentaquark Θ⁺ [uudds] in 2003

no clear conclusion reached due to large widths & theoretical ambiguities

Fazio, 2004 Eidelman, Gutsche, Hanhart, Mitchell, Spanier, 2020 (PDG)

First one uniquely identified as exotic was χ_{c1}(3872) discovered in heavy sector in 2003;
 First pentaquark in 2015 in heavy sector as well;

much smaller widths and clearer understanding of cc allowed to exclude conventional interpretations

Hidden charmonium

 $\begin{array}{l} \underline{17 \ states}: \ \chi_{c1}(3872), \\ T_{\psi 1}(3900)^{+}, \ T_{\psi}(4020)^{+}, \ T_{\psi}(4050)^{+}, \ T_{\psi}(4100)^{+}, \ T_{\psi}(4200)^{+}, \\ T_{\psi 1}(4430)^{+}, \ T_{\psi}(4240)^{+}, \\ \chi_{c1}(4140), \ \chi_{c1}(4274), \ \chi_{c1}(4685), \ \chi_{c0}(4500), \ \chi_{c0}(4700), \\ \chi(4630), \ \chi(4150), \ \chi(4740), \ \chi(3960) \end{array}$

Hidden charmonium

Discovering more exotics ...

Summary of all exotics ... 37 states

$B^0 \to J/\psi \varphi K_s$

- Compare $B^0 \rightarrow J/\psi \phi K_s^0$ decays to $B^+ \rightarrow J/\psi \phi K^+$ (10x larger statistics)
- Test isospin symmetry

- Share parameters for all $K^* \rightarrow \phi K$ and $X \rightarrow J/\psi \phi$ components with B⁺ mode
- $T_{us1}(4000)^{\circ}$ seen with >4 σ significance
 - isospin partner of $T_{\psi s1}(4000)^+$

$$\Delta M = -12^{+11}_{-10} {}^{+6}_{-4} \,\mathrm{MeV}$$

Pentaquarks at LHCb

PRL 131 (2023) 031901 10

T_{cs} at LHCb

Candidates / $(17.3 \text{ MeV}/c^2)$

60

30

20

10

2.5

 $m(D^-K^+)$ [GeV/ c^2]

LHCb

(a)

3.5

 First [csud] state observed in B⁺→ D⁺D⁻K⁺: T_{cs0}(2900)⁰, T_{cs1}(2900)⁰
 PRD 102 (2020) 112003

- Search for [csqq] partners in $B^{0} \rightarrow \overline{D}^0 D_s^+ \pi^-$ and $B^{0} \rightarrow D^- D_s^+ \pi^+$
- Observed T_{c50}(2900)⁰, T_{c50}(2900)⁺⁺

- Probing same poles, hope to fit them all with common K-matrix in future
- Different from those seen by LHCb (J^P=1⁻ vs. 0⁺/1⁺/2⁻)

on Y(10753) from Belle(II)

- Structure in $\Upsilon(1/2/3S)\pi^+\pi^- \rightarrow \Upsilon(3D)$ or exotics JHEP 10 (2019) 220
- Not seen in B^(*) B^(*)

4c-tetraquark

- In 2020 LHCb observed structures in $J/\psi J/\psi$ mass spectrum \rightarrow clear peak at 6900 MeV with >5 σ significance
- CMS and ATLAS confirm the $T_{\psi\psi}$ (6900) state
- Confirm hints seen at 6600 (7200) MeV as peaks with $10(4)\sigma$ significance

χ_{c1}(3872) – most studied one

- Quantum numbers measured to be 1⁺⁺
- Various production channels: B/Λ_b -decays, pp(\overline{p} ,Pb), PbPb, e⁺e⁻
- Various decay modes: $J/\psi\pi^+\pi^-(\rho^0)$, $J/\psi\omega$, $D^0\overline{D}^{*0}$, $J/\psi\gamma$, $\psi(2S)\gamma$, $\chi_{c1}\pi^0$, ...
- Mass & width measurement drastically improved

 $M(\chi_{c1}(3872)) - M(D^{0}\overline{D}^{*0}) = LF$ $= -0.04 \pm 0.12 \text{ MeV}$ $\Gamma = 1.19 \pm 0.21 \text{ MeV} \text{ [in J/}\psi\pi^{+}\pi\text{]} \text{ CI}$

though still indistinguishable from $D^0\overline{D}^{*0}$ threshold

χ_{c1}(3872) – new measurements

$\chi_{c1}(3872)$ – new measurements

The narrowest one - T_{cc} [ccud]

2021: signal in D⁰D⁰π⁺ just below D⁰D^{*+} threshold

Other doubly-heavy states, [QQud]

 Opposite expectations in some molecular models Li, Sun, Liu, Zhu, 2012 Hudspith et al., 2020 what your model predicts?

 Prospects for searches at pp (LHC/LHCb) : 1-10 events per mode in Run3. real chances to find (if combining several modes)

Ivan Polyakov, CERN / 30th Rencontres du Vietnam

Much more interesting!

Long-lived 5/6-quark states

Qqqqq and Qqqqqq are candidates for stable compact multiquarks since 1980s

Instability of compact-state \rightarrow short-range repulsion for molecula?

- Molecule configurations may give ~2-20 MeV binding (2.2 MeV in deuteron)
 → long-lived states Yamaguchi et al., 2011 Huang, Ping, Wang, 2014
- Deuteron-like baryon-meson/di-baryon moleculas with c/b-quark

... meeting hypernuclei physics. Will inclusion of heavy quarks be as fruitful as it was in hadron spectroscopy? Ivan Polyakov, CERN / 30th Rencontres du Vietnam

Experimental feasibility

- ALICE observed hypertriton in both PbPb, pPb and pp collisions ALICE, 2021
- LHCb has x50-100 larger statistics of pp-collisions than ALICE

• LHCb has searched for long-lived [budud] & [bsudu] in J/ ψ pK π & J/ ψ p ϕ channels $\sigma^*BR(pp \rightarrow P_bX)/\sigma^*BR(pp \rightarrow \Lambda_b) < \sim 2 \times 10^{-3}$

compare to $\sigma(d)/\sigma(p) \sim 2 \times 10^{-3}$ LHCb, 2018

- Even more perspectives with charm / double-charm
 - → my estimates for LHCb: O(10⁵) candidates for H_{c(s)}, O(10³-10⁴) for H_{b(s)} and O(10-100) for H_{cc} → O(10⁴) H_c for ALICE J. Stachel, talk
- Ivan Polyakov, CERN / 30th Rencontres du Vietnam

Conclusion

- Exotic Spectroscopy is the main tool to study quark interaction at hadron level
- Huge experimental progress in last 20 years,
 ... more than 36 states established ... a lot of hopes attached
- Now need to start new "precise" phase
 - Accounting for coupled-channels in analyses of wide exotic states (produced in both B-decays and e⁻e⁺)
- Hunt for new narrow states
 - T_{bc} [bcud] likely be most important measurement of next 5-10 years in the field
 - Deuteron-like states with b/c quarks