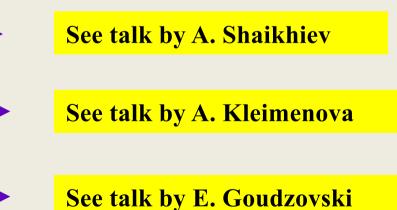


Status and prospects of rare kaon decay experiments Monica Pepe INFN Perugia On behalf of the NA62 Collaboration


RENCONTRES DU VIETNAM 30th Anniversary August 6 – 12, 2023 ICISE - Quy Nhon, Vietnam

WINDOWS ON THE UNIVERSE

- Kaon Physics key observables
- ***** Kaon physics *a***J-PARC** :
 - **KOTO** results and short-term prospects
 - Long term prospect KOTO II
- Charged kaon factory @CERN : the NA62 experiment
 - > Measurement of the $\mathbf{K}^+ \to \pi^+ \nu \bar{\nu}$ decay
 - > Precision measurements, χ_{PT} studies
 - LFUV, LFV, LNV studies
 - Dark sector with kaons
- Future of kaon physics @CERN

1

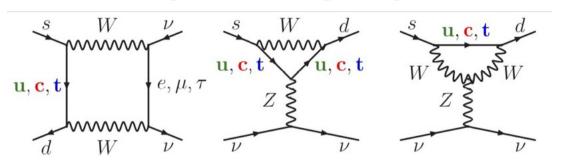
Rare kaon decays:

	Decay	Γ _{sd} /Γ	Theory Error*	SM BR x1011	EXP BR x 10 ¹¹	EXPERIMEN
($K_L \rightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 300	кото
	$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	90%	4%	8.4 ± 1.0	10.6 ± 4.0	NA62
	$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	<28	KTeV
	$K_L \rightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	<38	KTeV
	$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 <u>+</u> 11	BNL-871

(see also arXiv:2203.09524)

Im $\mathsf{BR}(K_L o \pi^0 \nu \overline{
u})$ $\mathsf{R}_{\mathsf{SD}}(K_L o \pi^0 \ell^+ \ell^-)$ $(\bar{\rho}, \bar{\eta})$ BR(K+ T+V) $BR_{SD}(K_L)$ Re $BR_{SD}(K_L \rightarrow \mu^+ \mu^$ charm

- FCNC processes dominated by box and Z-penguin diagrams
- Highly GIM-suppressed with very small rates in SM
- SM rates determined by V_{CKM} with minimal non-parametric theory uncertainties
- The current focus is the Golden Mode $K \rightarrow \pi v \bar{v}$ uniquely clean theoretically and sensitive to new physics


NΤ YEAR 2019 2021 2004 2000 2000

(*) approximate error on LD-subtracted rate excluding parametric contributions

$K \rightarrow \pi \nu \overline{\nu}$ in the Standard Model

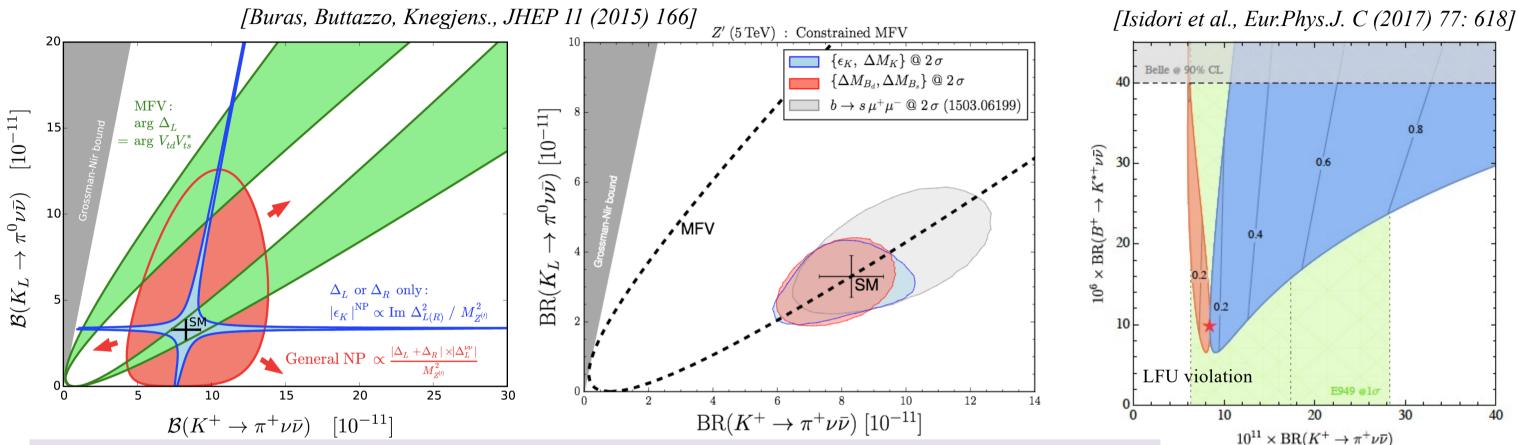
Box and Penguin (one-loop) diagrams

- ✓ FCNC process forbidden at tree level
- \checkmark s \rightarrow d transition and highest CKM suppression
 - \rightarrow extremely rare process
- ✓ Theoretically clean: short distance contribution

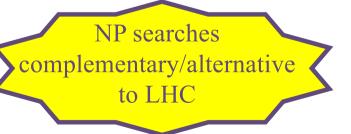
✓ Hadronic matrix element evaluated experimentally using the precisely measured semileptonic $BR(K_{l3})$

SM Predictions (uncertainty mainly from CKM parameters) [Buras et al., JHEP 11 (2015) 033] $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu}) = (8.4 \pm 1.0) \cdot 10^{-11}$ BR(K⁰ $\rightarrow \pi^{0} \nu \overline{\nu}) = (3.4 \pm 0.6) \cdot 10^{-11}$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}}\right]^{2.8} \left[\frac{\gamma}{73.2^\circ}\right]^{0.74}$$


$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^2 \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}}\right]^2 \left[\frac{\sin (7\pi^2 + 10^{-3})^2}{\sin (7\pi^2 + 10^{-3})^2}\right]^2 \left[\frac{\sin (7\pi^2 + 10^{-3})^2}{\sin (7\pi^2 + 10^{-3})^2}\right]^2$$

$K \rightarrow \pi \nu \overline{\nu}$ beyond the Standard Model


Indirect searches for NP with high precision studies of rare K decays

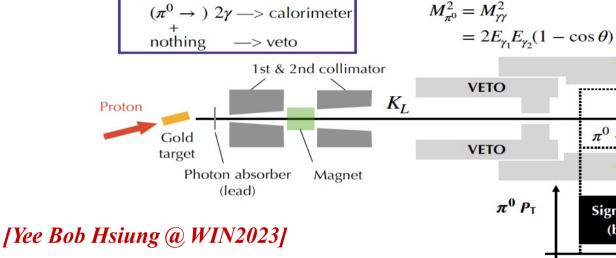
High sensitivity to New Physics:

- Unique probe in flavour physics to reach a model independent O(100) TeV mass scale
- Correlations significantly change for different classes of NP models [EPJ C76 (2016) no.4 182]
- $\succ O(50\%)$ BR variations in many different models
 - (Z', Little Higgs, Randall-Sundrum, non-MVF MSSM, LFUV leptoquark...)
- \blacktriangleright Measurement of both K⁺ and K_L modes discriminate among different scenarios

Kaon physics @ JPARC

Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia



Primary beam:

- 30 GeV/c protons on gold target
- 2s spill length

Secondary beam:

- neutral beam: $K_L / n / \gamma$
- 2016–2018:
 - $p_{K} = 1.4 \text{ GeV/c}$ (peak momentum)
 - K_L flux: 2.1 x 10⁻⁷ K_L per PoT

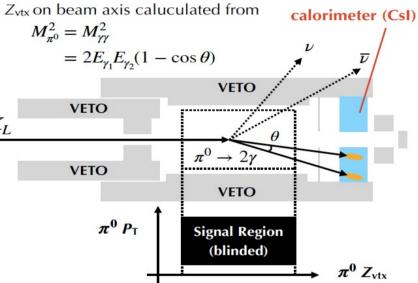
Signature of $K_L \to \pi^0 \nu \overline{\nu}$:

Signature:

 $2\gamma + \text{missing}P_{T} + \text{nothing}$

- Well collimated neutral beam (precise P_T)
- Good photon detection
- > Hermetic vetoes in decay region and in beam region after the EM calo

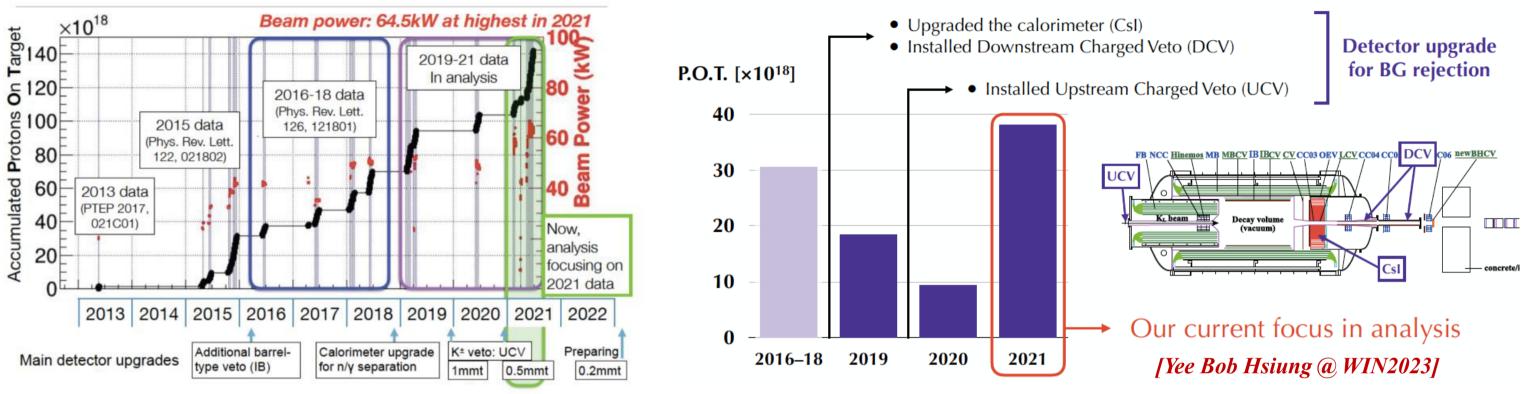
Monica Pepe - INFN Perugia


Rencontres du Vietnam - 30th Anniversary

Study of the K_L $\rightarrow \pi^0 \nu \overline{\nu}$ (*a*) J-PARC in Ibaraki, Japan

[PRL 122 (2019) 021802, PRL 126 (2021) 121801]

Extremely challenging measurement


• CsI calorimeter to measure 2γ

• Hermetic veto to ensure nothing else

KOTO physics runs

2015 physics run: 24-42 kW beam power, 2.2×10¹⁹ PoT BR(K_L $\rightarrow \pi^0 \nu \bar{\nu}) < 3.0 \times 10^{-9}$ (90% CL) [PRL 122 (2019) 021802]

2016-2018 physics runs: 31-51 kW beam power, 3.05×10¹⁹ PoT BR(K_L $\rightarrow \pi^0 v \bar{v}$) < 4.9×10⁻⁹ (90% CL) [PRL 126 (2021) 121801]

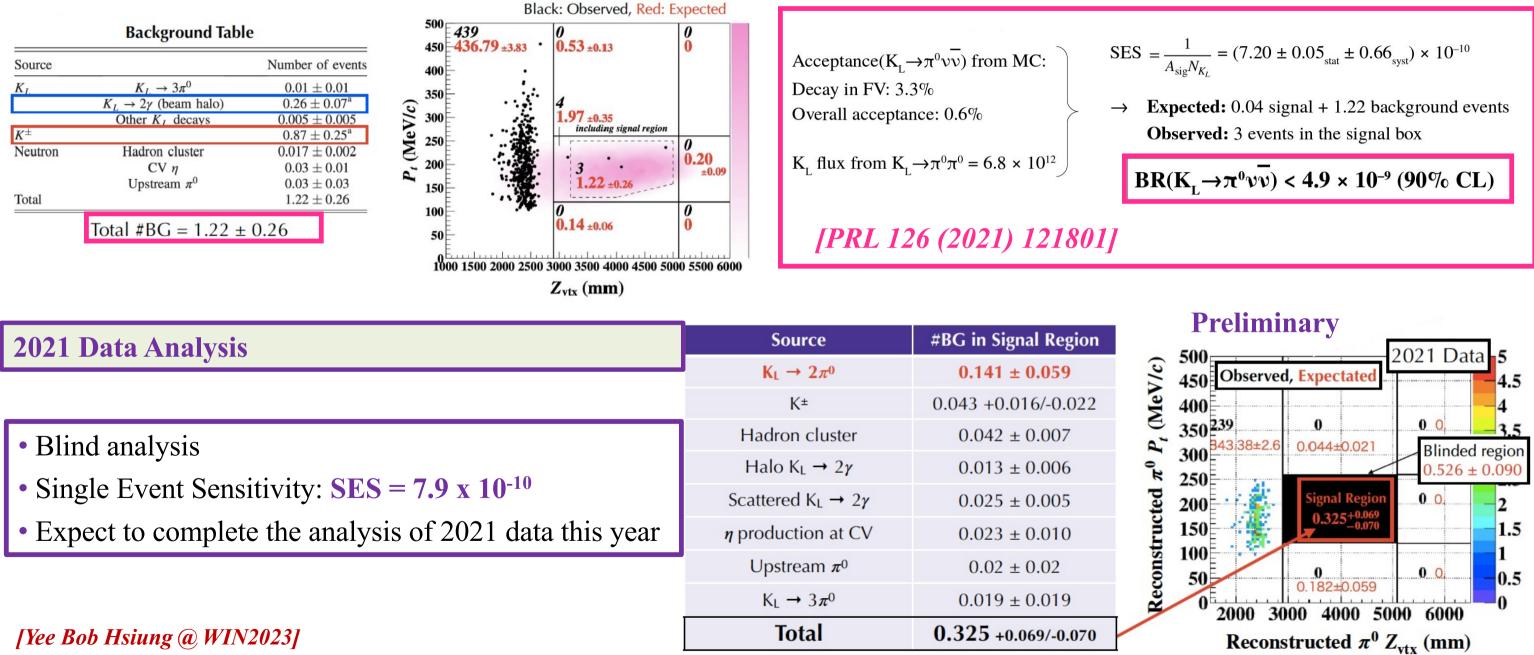
2019-2021 physics run: 64.5 kW max beam power

- Twice the 2016-2018 data set
- Lower backgrounds

Detector improvements in 2019-2021

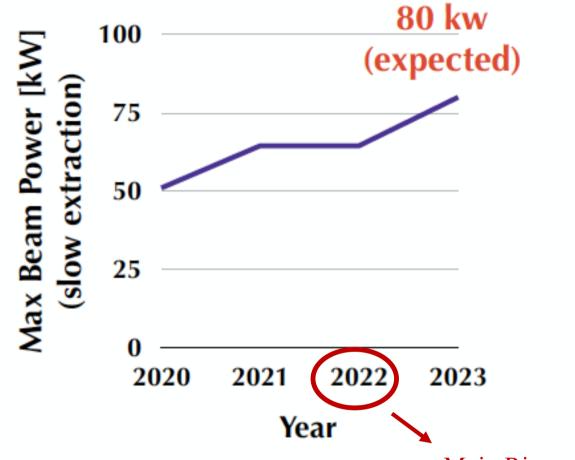
- Multi-Pixel Photon Counters (MPPCs)
- Downstream Charged Veto counter (DCV)
- Upstream Charged Veto counter (UCV)

Upgrade completed in 2020


 \rightarrow focus on the analysis of the 2021 data set

KOTO Data Analysis

2016-2018 Data Analysis


Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia

KOTO short term prospects

J-PARC Main Ring upgrade

- Beam power increased to 80 kW (~100 kW in the future)
- Beam Time: 2023 2026

DAQ upgrade

- handle higher trigger rate
- introduce new triggers

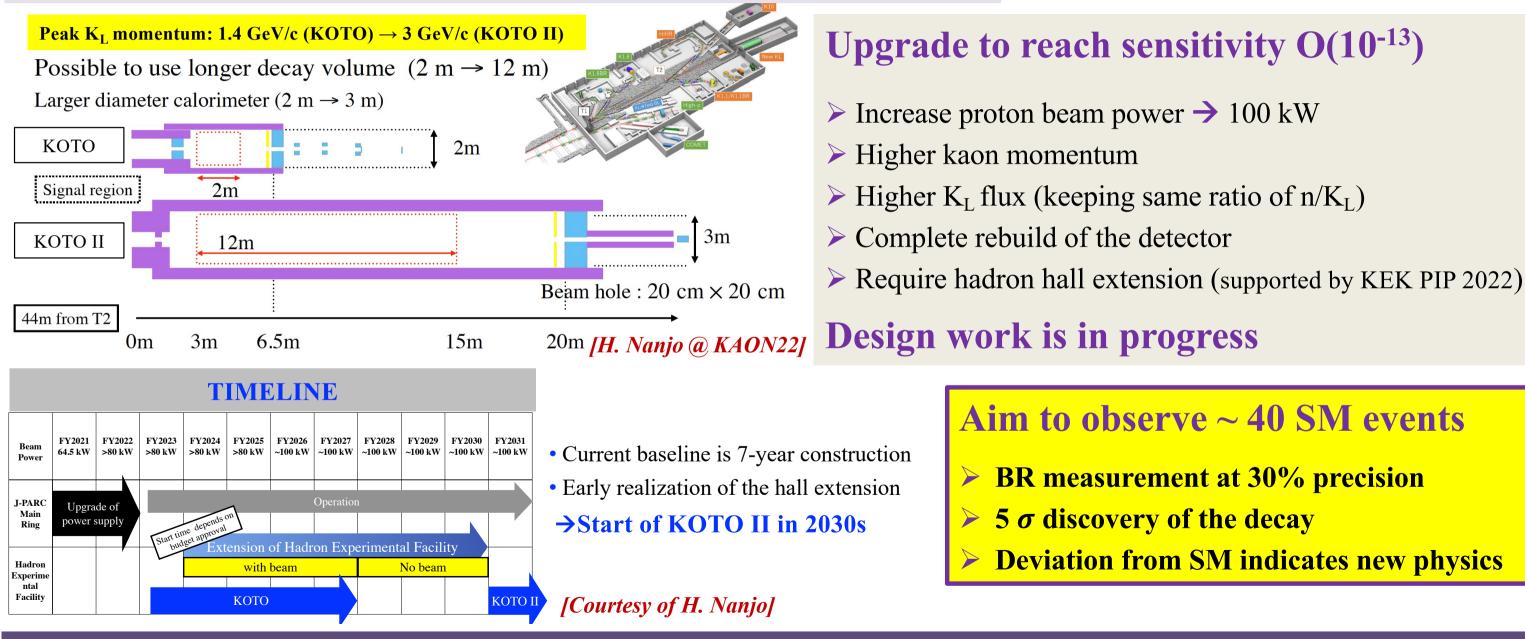
DAQ Rate: ~10 k events/spill \rightarrow 25 - 30 k events/spill

Main Ring: magnet power supplier upgrade during LS

Expect to approach SM SES below 10⁻¹⁰ by 2025, operating in low-background regime

[Yee Bob Hsiung @ WIN2023]

Rencontres du Vietnam - 30th Anniversary



KOTO II : measurement of the BR($\overline{K_I} \rightarrow \pi^0 \nu \overline{\nu}$)

Design of KOTO II (*a*) **J-PARC**

[arXiv 2110.04462 Extension of J-PARC Hadron Experimental Facility : Third White Paper] [arXiv 2204.13394 Searches for new physics with high-intensity kaon beams]

Rencontres du Vietnam - 30th Anniversary

Aim to observe ~ 40 SM events

- **BR** measurement at 30% precision
- **Deviation from SM indicates new physics**

Kaon physics @ CERN

Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia

Kaons @ CERN

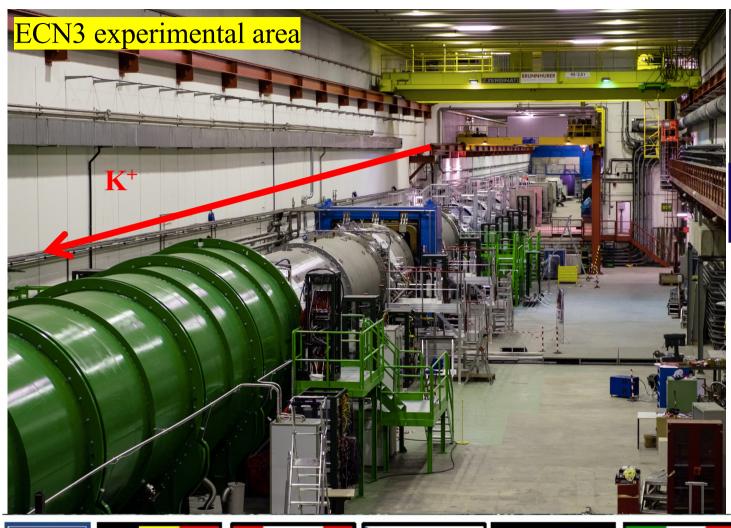
NA31 : $K_L + K_S$ Search for direct CPV : ϵ'/ϵ		1986-1988		Jura mountains
NA48 : $K_L + K_S$ Search for direct CPV : ϵ'/ϵ	\rightarrow	1997-2001		SPS
NA48/1 : K_S Rare K_S /Hyperon decays, CPV tests		2002		
NA48/2 : K ⁺ + K ⁻ Search for direct CPV : charge asymmetry measurement		2003-2004		Geneva airport
LHC		2007-2008	-	NA62- R_{K} : K ⁺ $R_{K} = K^{\pm}_{e2}/K^{\pm}_{\mu2}$
NA48/NA62 SPS NA48/NA62 SPS NA48/NA62 NA48/NA62 SPS NA48/NA62 SPS NA48/NA62 SPS NA48/NA62 SPS	tistics	2016-2018	•	NA62-RUN1 Measurement of
ALICE ATLAS IN THE INTERNAL INC.		2021-2025	+	NA62-RUN2 Measurement of
PSB PS P Pb loss				

Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia

₁₂ measurement

+ + K-


: K⁺

of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

The NA62 experiment

MAIN GOAL:

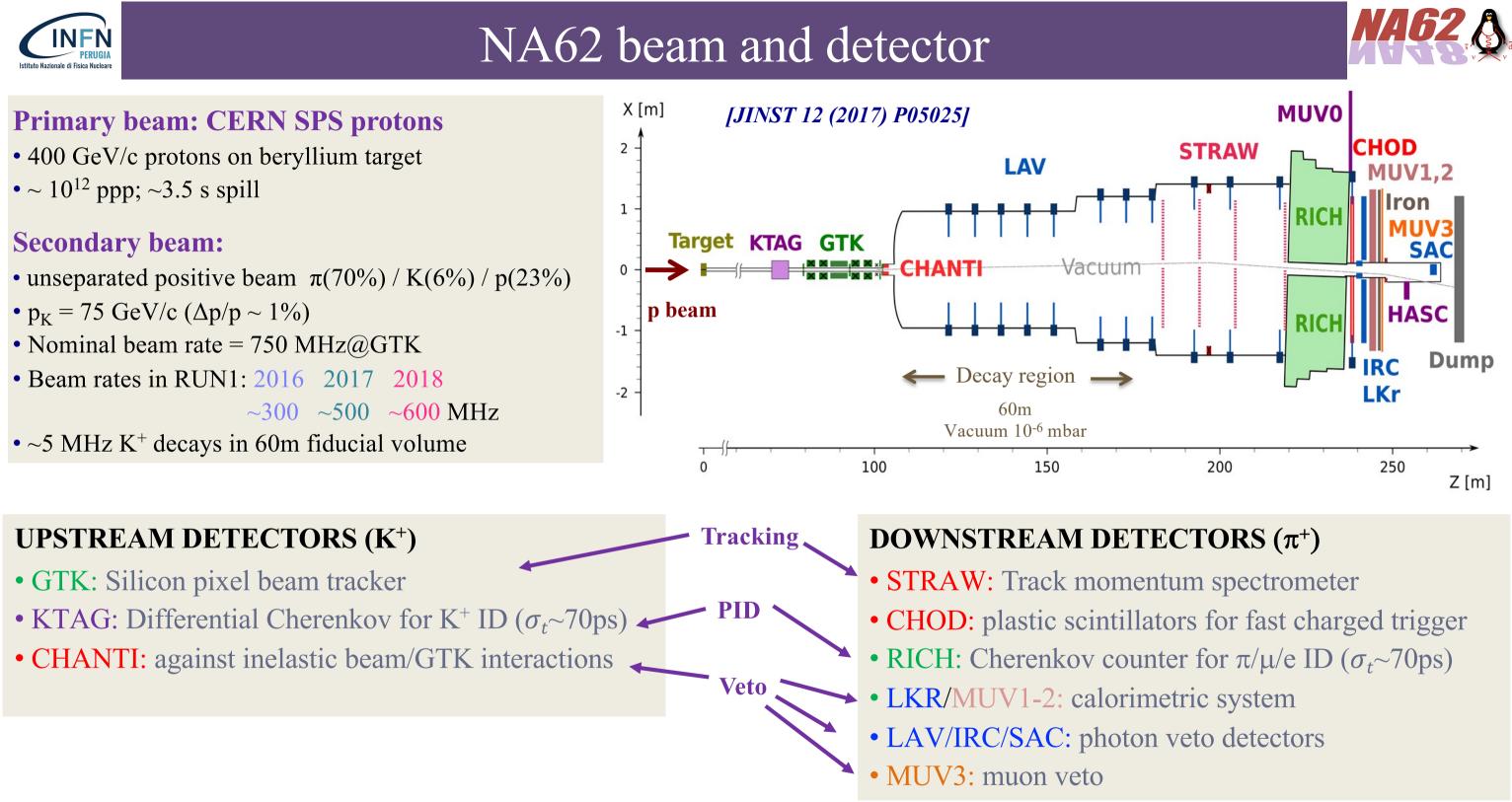
Measurement of BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) (a) 10% accuracy \rightarrow novel K⁺ decay in flight technique

2008	2009-2015	2015	
NA62 Approval	Detector R&D Installation	Commissioning	

RUN2 2021-LS3

- Complete $\pi^+ v \bar{v}$ measurement
- Broad physics programme
 - > Precision measurements
 - ► Rare and forbidden decays, LFV and LNV
 - \rightarrow Dump mode \rightarrow Exotic searches (Dark Photons, FIPs, etc)

NA62 Collaboration ~300 participants from 31 institutions


PLB 791 (2019) 156, JHEP 11 (2020) 042, JHEP 06 (2021) 093

2016-2018 **Physics RUN1** (~407 days)

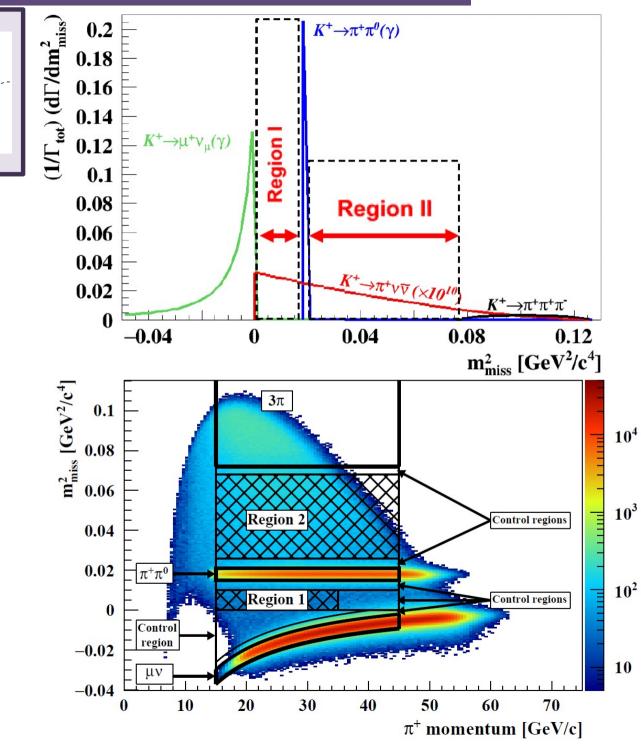
2021-2025 **Physics RUN2** (started July 2021)

NA62: $\mathbf{K}^+ \rightarrow \pi^+ v \bar{v} RUN1$ analysis

 P_{K}

 $\theta_{\pi K}$

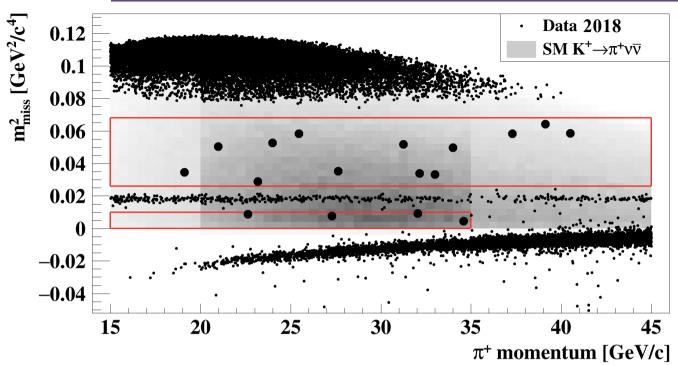
P_v

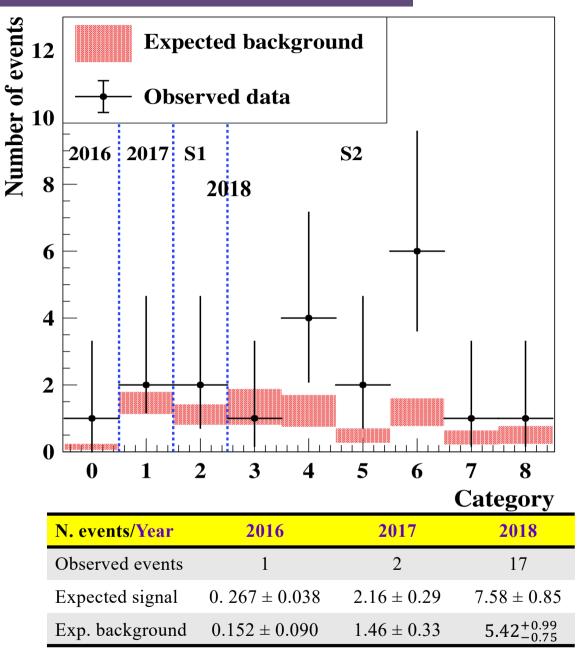

- Decay in flight technique
- **High-momentum Kaon beam** $15 < p_{\pi} < (35) 45 \text{ GeV/c}$
- High intensity
- High signal efficiency

→ Kinematic selection based on $m_{miss}^2 = (P_K - P_\pi)^2$

Performance keystones

- > Precise timing between subdetectors O(100 ps)
- > Kinematic background suppression $\geq 10^3$
- ➢ Particle-ID
- > π^0 suppression (from K⁺ $\rightarrow \pi^+ \pi^0$) $\geq 10^8$
- > Muon suppression $\geq 10^8$
- MVA techniques for PID and accidental background suppression
- Normalization from $K^+ \rightarrow \pi^+ \pi^0$
- Selection optimized in bins of π^+ momentum
- Data-Driven estimation of background from K⁺ decays and accidentals
- Background estimation validated in control regions
- Two signal regions in m²_{miss}
- Blind analysis :


Signal and Control kinematic regions masked during the analysis


NA62: $\mathbf{K}^+ \rightarrow \pi^+ v \bar{v}$ RUN1 result

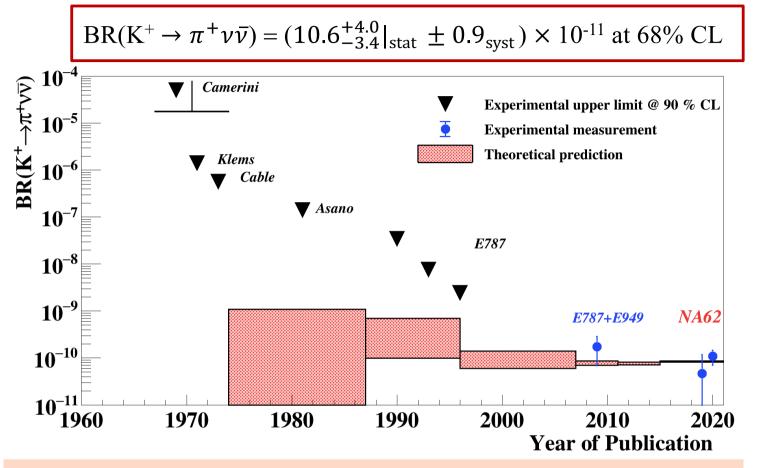
Combined NA62 results 2016+2017+2018

- > SES = $(8.39 \pm 0.53_{\text{syst}}) \times 10^{-12}$
- Expected signal: $10.01 \pm 0.42_{\text{syst}} \pm 1.19_{\text{ext}}$
- Expected backg: $7.03^{+1.05}_{-0.82}$
- 20 events observed in signal regions
- $\blacktriangleright P(bkg only) = 3.4 \times 10^{-4}$
- \blacktriangleright 3.4 σ significance

BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} \text{ at } 68\% \text{ CL}$

Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia


[JHEP 06 (2021) 096]

Implications of NA62 $K^+ \rightarrow \pi^+ v \bar{v}$ result

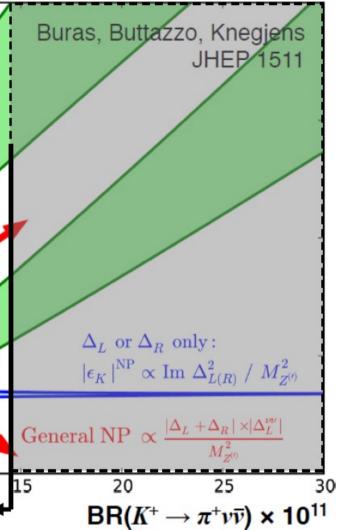
1011

× (<u>1</u>10, 15

YUNCE CONTRACT OF CONTRACT OF

MFV

 $\operatorname{arg} \mathcal{L}$ = arg V

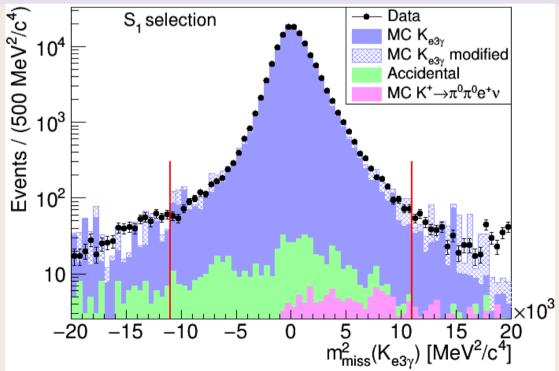

- **>** Most precise measurement of the $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay rate to date
- > Strongest evidence so far (3.4σ) for its existence
- > Part of parameter space already ruled out: large BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) deviations from SM excluded

Next target:

improved precision to match theoretical uncertainty by the end of RUN2

NOT-SUSY models *[See also arXiv:2006.01138]*

$K^+ \rightarrow \pi^0 e^+ v\gamma$ precision measurement


Decay described in ChPT

BR(K⁺ $\rightarrow \pi^0 e^+ \nu \gamma$) strongly depends on E_v and θ_{ev} in the K⁺ rest frame

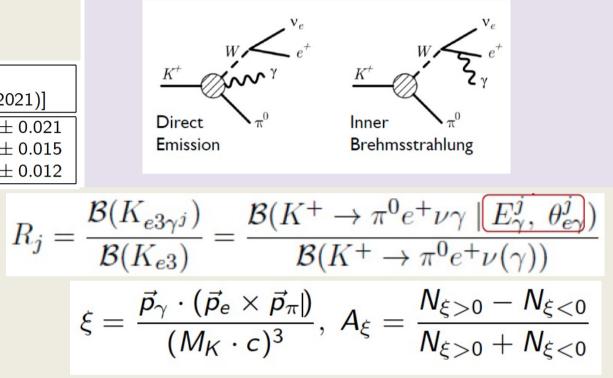
	E^{j}_{γ} , $ heta^{j}_{e\gamma}$	<i>О</i> (р ⁶) ChPT [EPJ C 50 (2007)]	ISTRA+ [PAN 70 (2007)]	OKA [EPJ C 81 (2021)]
$R_1 imes 10^2$	$E_{\gamma} > 10$ MeV, $ heta_{e\gamma} > 10^{\circ}$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_{2} \times 10^{2}$	$E_{\gamma}>$ 30 MeV, $ heta_{e\gamma}>$ 20 $^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
$R_{3} \times 10^{2}$	$E_{\gamma} > 10$ MeV, 0.6 $< \cos heta_{e\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

GOAL

- Measurement of normalized BR in three kinematic regions (R₁, R₂, R₃)
- Test of T-conservation through the T-odd observable ξ and its asymmetry A_{ξ}

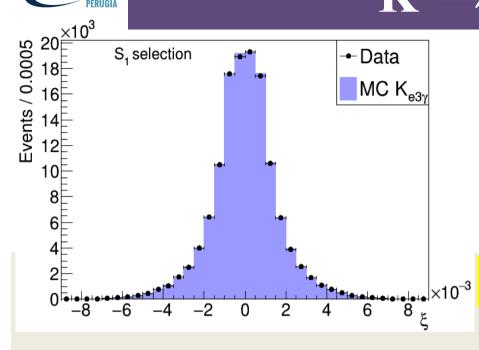
Analysis on RUN1 data:

Signal: $K^+ \rightarrow \pi^0 e^+ \nu \gamma$


- $\succ e^+$ track matching K^+ track; e^+ PID
- > 2 EM calorimeter γ from $\pi^0 + 1$ radiative γ
- > Veto of additional photons
- \blacktriangleright Conditions on $m^2_{miss}(K_{e3\gamma}) = (P_K P_e P_{\pi} P_{\gamma})^2$

Normalization: $K^+ \rightarrow \pi^0 e^+ v$

- \succ Selected as signal without radiative γ
- \succ Minimal differences in signal and normalization \Rightarrow reduced systematic effects


Rencontres du Vietnam - 30th Anniversary

ChPT LD dominated

$K^+ \rightarrow \pi^0 e^+ v\gamma$ precision measurement

	Normalization	S_1	S_2	S_3
Selected candidates	6.6420×10^{7}	1.2966×10^{5}	0.5359×10^5	0.3909×10^{5}
Acceptance	$(3.842 \pm 0.002)\%$	$(0.444 \pm 0.001)\%$	$(0.514 \pm 0.002)\%$	$(0.432 \pm 0.002)\%$
Accidental		$(4.9\pm 0.2\pm 1.3)\times 10^2$	$(2.3\pm 0.2\pm 0.3)\times 10^2$	$(1.1\pm 0.1\pm 0.5)\times 10^2$
$K^+ \to \pi^0 \pi^0 e^+ \nu$		$(1.1\pm1.1)\times10^2$	$(1.1\pm1.1)\times10^2$	$(0.1\pm0.1)\times10^2$
$K^+ \to \pi^+ \pi^0 \pi^0$		< 20	< 20	< 20
$K^+ \to \pi^+ \pi^0$	$(1.0 \pm 1.0) \times 10^4$			
Total background	$(1.0 \pm 1.0) \times 10^4$	$(6.0 \pm 1.8) \times 10^2$	$(3.4\pm1.2)\times10^2$	$(1.2\pm0.6)\times10^2$

RESULTS [arXiv: 2304.12271 (2023), submitted to JHEP]

$R_1 \times 10^2 = 1.715 \pm 0.005_{\text{stat}} \pm 0.010_{\text{syst}} = 1.715 \pm 0.011$	$A_{\xi}(S_1) \times 10^3 = -1.2 \pm 2.8_{\text{stat}} \pm 1.9_{\text{syst}}$
$R_2 \times 10^2 = 0.609 \pm 0.003_{\text{stat}} \pm 0.006_{\text{syst}} = 0.609 \pm 0.006_{\text{syst}}$	$A_{\xi}(S_2) \times 10^3 = -3.4 \pm 4.3_{\text{stat}} \pm 3.0_{\text{syst}}$
$R_3 \times 10^2 = 0.533 \pm 0.003_{\text{stat}} \pm 0.004_{\text{syst}} = 0.533 \pm 0.004_{\text{syst}}$	$A_{\xi}(S_3) \times 10^3 = -9.1 \pm 5.1_{\text{stat}} \pm 3.5_{\text{syst}}$

Sistematics:

NFN

MC statistics A۶

EM calorimeter response modelling, acceptance correction, theoretical model, MC statistics

Results comparison

	_				
	NA62	ChPT	ISTRA+	OKA	NA62 measurements of
$R_1 \times 10^2$	1.715 ± 0.011	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	
$R_2 \times 10^2$	0.609 ± 0.006	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	by 5% relative (3 stand
$R_3 \times 10^2$	0.533 ± 0.004	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	Improvement on the ex
$A_{\xi}(S_1) \times 10^3$	$-1.2 \pm 2.8 \pm 1.9$			$-0.1 \pm 3.9 \pm 1.7$	by a factor > 2
$A_{\xi}(S_2) \times 10^3$	$-3.4 \pm 4.3 \pm 3.0$			$+7.0 \pm 8.1 \pm 1.5$	
$A_{\xi}(S_3) \times 10^3$	$-9.1 \pm 5.1 \pm 3.5$			$-4.4 \pm 7.9 \pm 1.9$	The T-asymmetry meas
	5.1 <u>-</u> 5.1 <u>-</u> 5.5				precision are compatib

Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia

of Rj smaller than $O(p^6)$ ChPT dard deviation disagreement) xperimental precision of Rj

surements at an improved ble with no asymmetry

The K⁺ $\rightarrow \pi^+\mu^+\mu^-$ decay

$K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$ decays $(l = e, \mu)$

Crivellin et al. PRD 93074038 (2016) D'Ambrosio et al. JHEP 02049 (2019)

- Heavily suppressed FCNC transition, LD dominated: $K^{\pm} \rightarrow \pi^{\pm} \gamma^* \rightarrow \pi^{\pm} l^+ l^-$
- Main kinematic variable $z = m_{l+l}^2 / m_K^2$
- Form Factor of the $K^{\pm} \rightarrow \pi^{\pm} \gamma^*$ transition: W(z) parameterized in ChPT at $O(p^6)$ as

 $W(z) = G_F m_K^2 (a_+ + z b_+) + W^{\pi\pi}(z)$

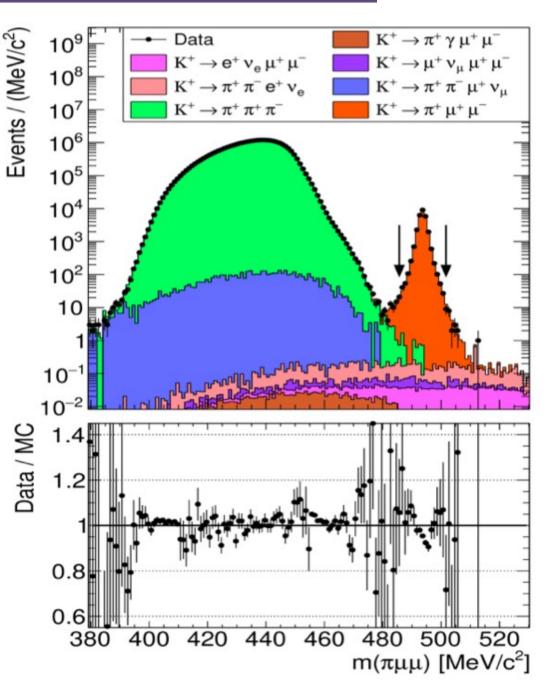
with real parameters a_+ , b_+ and (known) complex function $W\pi\pi(z)$

GOAL

- Model independent measurement of **BR**($K^+ \rightarrow \pi^+ \mu^+ \mu^-$)
- Measurement of $|W(z)|^2$ and determination of FF parameters a_+ , b_+

Analysis on RUN1 data:

Signal: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

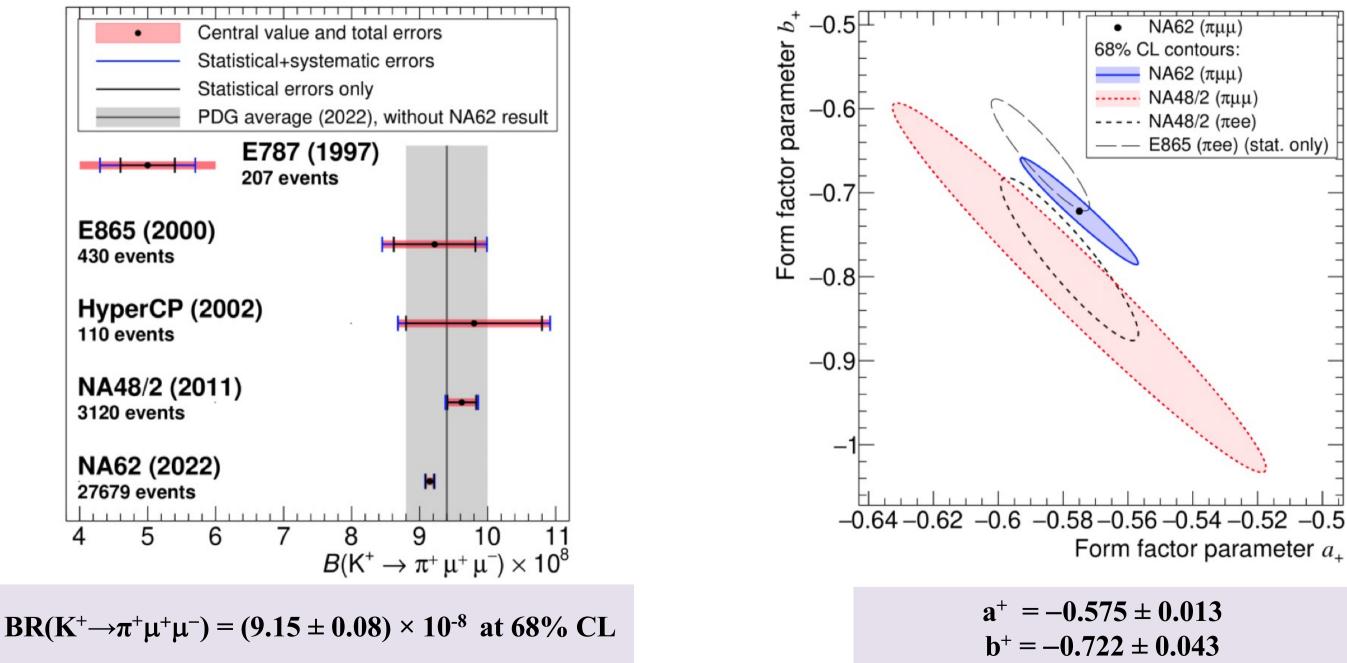

- > 3-track vertex topology
- \succ identified as $\pi^+\mu^+\mu^-$
- > kinematic cuts on $m(\pi\mu\mu)$ to suppress $K_{3\pi}$ events

Normalization: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

- > same 3-track selection as signal, but π -ID
- > minimal differences in signal and normalization
 - ⇒ reduced systematic effects

Lepton universality (LU) predicts same a,b for $l = e,\mu$

N _{events} after selection		
K ⁺ decays	$\sim 3.5 \times 10^{12}$	
Signal	27679	
Estimated bl	kg. 7.8 ± 5.6	



[JHEP 11 (2022) 011]

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$ results

$N^{obs} = 27679$ with relative background contamination < 1%

Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia

[JHEP 11 (2022) 011]

The $K^+ \rightarrow \pi^+ \gamma \gamma$ decay

- Crucial test of ChPT at O(p⁶), LD dominated [D'Ambrosio, Portoles PLB 386403 (1996)]
- Main kinematic variables: $z = m_{\gamma\gamma}^2 / m_K^2$ and $y = P_K(P_{\gamma 1} P_{\gamma 2}) / m_K^2$
- BR(K⁺ $\rightarrow \pi^+ \gamma \gamma$) parameterized in ChPT by an unknown real parameter \hat{c}

GOAL: Measurement of **BR**($K^+ \rightarrow \pi^+ \gamma \gamma$) and \hat{c}

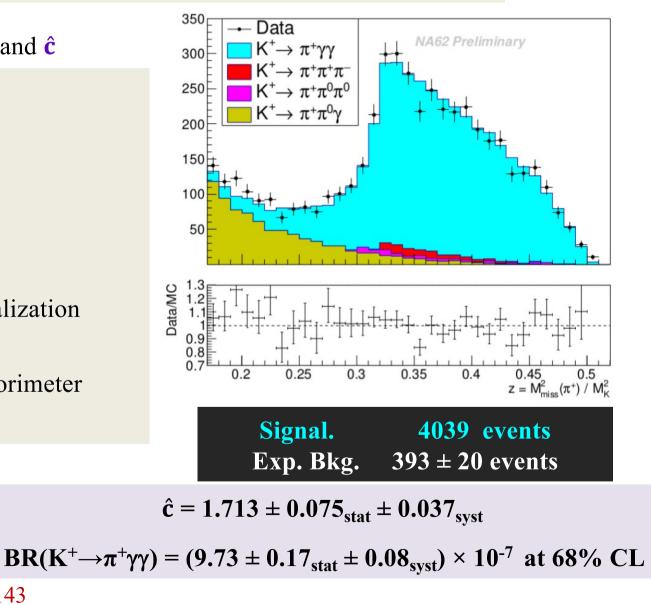
Analysis on RUN1 data:

Signal: $K^+ \rightarrow \pi^+ \gamma \gamma$

```
\succ \pi^+ track matching K<sup>+</sup> track
```

```
\succ EM calo clusters: \gamma\gamma pair
```

```
\geq z > 0.25
```


Normalization: $K^+ \rightarrow \pi^+ \pi^0$

- > minimal differences in signal and normalization
- \Rightarrow reduced systematic effects

Main background: cluster merging in calorimeter

 $K^+ \rightarrow \pi^+ \pi^0 \gamma$ or $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ with $\pi^0 \rightarrow \gamma \gamma$

External parameters fixed: Rev Mod Phys84 399 (2012), Science 368 (2020), Nucl. Phys. B648 (2003) Final result will use: D'Ambrosio, Knech, Neshatpour, arXiv:2209.02143

E787 (1997) 31 events

NA48/2 (2014) 149 events

232 events

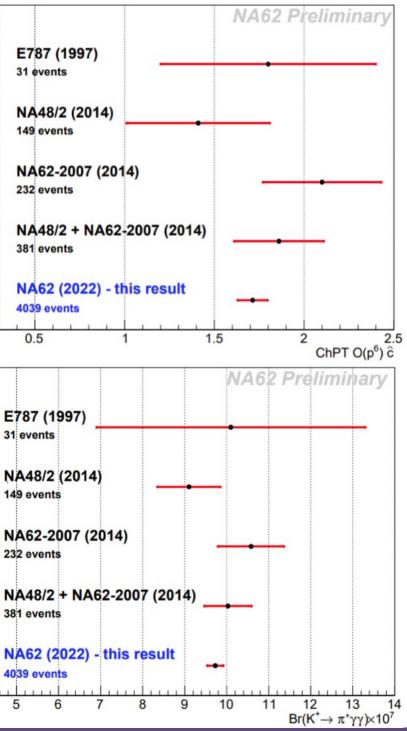
381 events

```
4039 events
 0.5
```

E787 (1997) 31 events

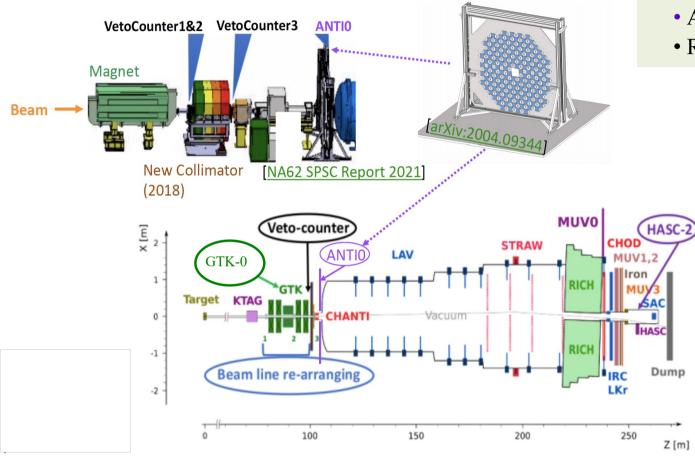
NA48/2 (2014) 149 events

NA62-2007 (2014) 232 events


381 events

4039 events

Rencontres du Vietnam - 30th Anniversary



NA62 short term prospects: RUN2

RUN2: 2021 – LS3

MAIN GOAL: Improve the **BR**($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement

Key modifications to reduce most dominant background in 2016-2018 data • Add 4th station to GTK beam tracker (GTK-0, next to GTK-1) • Rearrangement of beam line elements around GTK achromat • New Veto-hodoscopes upstream the decay volume (Veto-counter, ANTIO) • Additional veto counter downstream around the beam pipe (HASC-2)

- Replacement of CEDAR-N with CEDAR-H

Data taking foresee until LS3 (at least until 2025 included)

- 45-50% increase of intensity vs RUN1
- SES to SM K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ events with 2022 data $\leq 10^{-11}$
- Mitigation of intensity relate effects
- Analysis optimization in progress to further increase performance

Expect to measure BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) at O(15%) precision by LS3

Trigger upgrade to study new channels (e.g. $K^+ \rightarrow \pi^+ e^+ e^-$) Continuing LNV/LFV and dark sector searches with K⁺

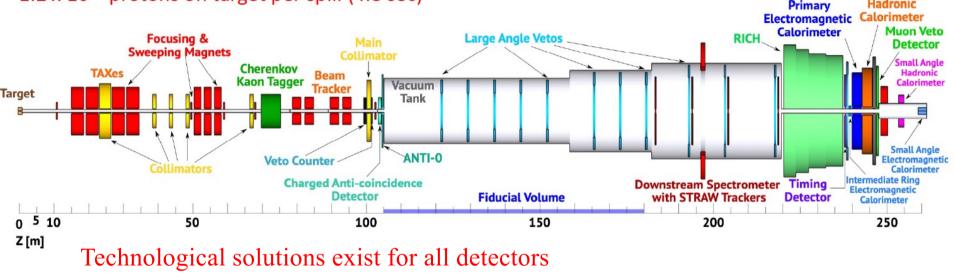
O(%) LFUV tests. Lower UL (10⁻¹¹ sensitivity)

Data taking periods in dump mode

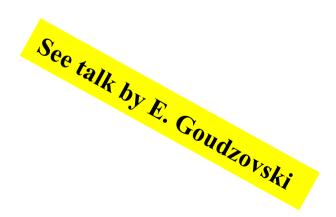
Expect 10¹⁸ POT in beam dump: dark photons/scalars, ALPs, HNLs

Rencontres du Vietnam - 30th Anniversary

Monica Pepe - INFN Perugia


Kaons (a) CERN long term plans

HIKE: High Intensity Kaon Experiments


 \rightarrow A multi-purpose high-intensity kaon decay-in-flight experiment at CERN SPS

1.2 x 10¹³ protons on target per spill (4.8 sec)

Physics program

- LFUV tests with precision < %

- K^+ (Phase-1) and K_L (Phase-2) physics program at CERN SPS after LS3 ٠
- Beam line upgrade: intensity $\times 4$ to $\times 6$ larger than NA62
- Advanced detectors with O(20ps) time resolution •
- Similar experimental layouts for charged and neutral beams: • smooth transition between the two phases

→ HIKE would allow for a kaon comprehensive program

Feasibility studies within CERN PBC initiative show that high-intensity facility is feasible for operation from Run4 from beam delivery point of view

[LoI-arXiv:2211.16586v1] (proposal to SPSC in preparation)

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ approaching SM theory precision $K_L \rightarrow \pi^0 l^+ l^-$ observation and measurement of the BR LFV –LNV searches with $O(10^{-12})$ sensitivity Measurement of V_{us} and main kaon decay modes Dump physics in synergy with Shadows proposal

Conclusions

NA62 and **KOTO** : current primary focus on $K \rightarrow \pi v \bar{v}$

Excellent prospects for kaon physics measurements with a broad program

Status:

 \succ Recent results on $\mathbf{K}^+ \rightarrow \pi^+ v \bar{v}$ (NA62) and $\mathbf{K}_{\mathbf{L}} \rightarrow \pi^0 v \bar{v}$ (KOTO)

BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11}$

BR(K_L $\rightarrow \pi^0 \nu \overline{\nu}) < 4.9 \times 10^{-9}$

 \blacktriangleright Precision measurements of rare K⁺ decays (NA62)

Prospects:

Short-term (< ~2025) clear strategy defined for $K \rightarrow \pi v \bar{v}$

- ✓ Reduce current backgrounds
- ✓ Run at higher beam intensity

Expect KOTO to reach SM SES and NA62 to reach O(15%) precision

- **Long-term (> ~2030)** next-generation of kaon experiments
- ✓ J-PARC: Plans for KOTO II to measure $BR(K_L \rightarrow \pi^0 \nu \overline{\nu})$
- \checkmark CERN: Proposal for high-intensity K⁺ and K_L experiments

