

Recent results of Baryon electromagnetic form factors at BESIII

Tiantian Lei (on behalf of BESIII Collaboration) University of Science and Technology of China

The Third Windows on the Universe Conference 6–12 Aug 2023, Quy Nhon, Vietnam

Electromagnetic Form Factors (EMFFs)

- Electromagnetic Form Factors are fundamental properties of the Baryons
 - Connected to charge, current distribution
 - > Crucial testing ground for models of the baryons' internal structure and dynamics

The baryon electromagnetic vertex Γ_{μ} describing the hadron current: $\Gamma_{\mu}(p',p) = \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_p}F_2(q^2)$ $F_1(q^2)$: Dirac FF Sachs FFs: $G_E(q^2) = F_1(q^2) + \tau\kappa_pF_2(q^2)$, $G_M(q^2) = F_1(q^2) + \kappa_pF_2(q^2)$ $F_2(q^2)$: Pauli FF

Time-like EMFFs: theoretic review

1961, first paper by N. Cabibbo and R. Gatto Phys. Rev. 124 (1961) 1577-1595

• The complex feature of TLFF leads to transversely polarized baryon even the beams are unpolarized. *Nuov Cim A* **109**, 241–256 (1996)

$$P_y = -\frac{\sin 2\theta \operatorname{Im}[G_E G_M^*]/\sqrt{\tau}}{\frac{|G_E|^2 \sin^2 \theta}{\tau} + |G_M|^2 (1 + \cos^2 \theta)}$$

BESIII Experiment

Spatial resolution $\sigma_{xy} \approx 130 \ \mu m$. ٠

BESIII Dataset

Recent results of neutron EMFFs

- Cross section and effective FF of $e^+e^- \rightarrow n\bar{n}$ measured from $\sqrt{s} = 2.0-3.08$ GeV, 647.9 pb⁻¹.
- γp coupling larger than γn coupling => consistent with theoretical limits from VMD, Skyrme etc.
- Oscillation of reduced-|G| observed in neutron with a phase orthogonal to that of

Nat. Phys. 17, 1200–1204 (2021)

Recent results of neutron EMFFs

- $\geq |G_E|, |G_M|$ of neutron measured separately from $\sqrt{s} = 2.0-2.95$ GeV.
- > Compared with the FENICE results, the values for $|G_M|$ from this work are smaller by a factor of 2-3.
- Results is compared with various models: pQCD, modified dipole, VMD and dispersion relations (DR), and DR model gives good consistency.

Measurement of Hyperons FFs

- It is difficult to study EMFFs of hyperons in space-like due to the difficulty in stable and high-quality hyperon beams.
- The hyperons can be produced in e^+e^- annihilation above their production threshold.
- The angular distribution of daughter baryon from Hyperon weak decay is:

 $\ge \frac{d\sigma}{d\Omega} \propto 1 + \alpha_A P_y \cdot \hat{q}$

 $\succ \alpha_{\Lambda}$: asymmetry parameter (P-violation)

Advantages:

- > Cross section can be obtained very close to threshold with finite PHSP of final state.
- ➤ With hyperon weak decay to B+P, the polarization of hyperon can be measured, so does the relative phase between G_E and G_M ! (Of course, enough statistics needed)

Cross section of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$

- Cross section of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ is measured with 11.9 fb⁻¹ data collected from $\sqrt{s} = 3.773$ to 4.258 GeV by ISR method.
- The non-zero cross section is consistent with previous measurement.

Cross section of $e^+e^- \rightarrow \Lambda\Lambda$

- A study of the cross section line shape to search for the source of the non-zero cross section has been performed.
- A model inspired by the perturbative QCD has been tried ۲ (blue dashed line in figure): *Phys. Rep. 550.1 (2015)*

$$\sigma(s) = \frac{c_0 \cdot \beta(s) \cdot C}{(\sqrt{s} - c_1)^{10}}$$

A model assuming a step exists near the threshold has been tried too (red solid line in figure): *PRL 124. 042001 (2020)*

$$\sigma(s) = \frac{e^{a_0} \pi^2 \alpha^3}{s[1 - e^{-\pi \alpha_s/\beta}] \left[1 + \left(\frac{\sqrt{s} - 2m_\Lambda}{a_1}\right)^{a_2}\right]}$$

The latter gives a better description of the cross section.

PRD 107.072005 (2023)

Cross section of $e^+e^- \rightarrow \Lambda_c^+\overline{\Lambda}_c^-$

- Cross section of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ is measured at 4 c. m. e close to the threshold, and $|G_E|/|G_M|$ is measured at two of them with larger statistics.
- A step in $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda_c^-}$ cross section observed, similar to $e^+e^- \rightarrow p\bar{p}$, followed by a plateau.
- Cross section of first energy point (1.5 MeV above threshold) is $236 \pm 11 \pm 46$ pb. PRL 120, 132001 (2018)

Cross section of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

- Measurements of cross section, $|G_E|$, $|G_M|$, and their ratio are performed at $\sqrt{s} = 4.64$ -4.95 GeV.
- Flat cross sections around 4.63 GeV are obtained and no indication of the resonant structure Y (4630), as reported by Belle, is found.
- An oscillation behavior is observed in the energy dependence of $|G_E|/|G_M|$, for the first time. *arXiv: 2307.07316*

Complete measurement of Σ^+ EMFFs

- An event of the reaction $e^+e^- \rightarrow \Sigma^+ (\rightarrow p\pi^0)\overline{\Sigma}^- (\rightarrow \overline{p}\pi^0)$ is formalized by joint angular distribution:
 - $\mathcal{W}(\xi) \propto \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi)$ Unpolarized part
 - + $\alpha_1 \alpha_2 (\mathcal{F}_1(\xi) + \sqrt{1 \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi))$ Correlated part
 - + $\sqrt{1 \alpha^2} \sin(\Delta \Phi)(-\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi))$, Polarized part

 $\mathcal{F}_0(\xi)=1$

 $\mathcal{F}_{1}(\xi) = \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} - \cos^{2}\theta \cos\theta_{1} \cos\theta_{2}$ $\mathcal{F}_{2}(\xi) = \sin\theta \cos\theta (\sin\theta_{1} \cos\theta_{2} \cos\phi_{1} - \cos\theta_{1} \sin\theta_{2} \cos\phi_{2})$ $\mathcal{F}_{3}(\xi) = \sin\theta \cos\theta \sin\theta_{1} \sin\phi_{1}$ $\mathcal{F}_{4}(\xi) = \sin\theta \cos\theta \sin\theta_{2} \sin\phi_{2}$

 $\mathcal{F}_5(\xi) = \cos^2 \theta$

 $\mathcal{F}_6(\xi) = \sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2 - \cos \theta_1 \cos \theta_2.$

• A nonzero relative phase leads to polarization p_y of the out going baryons:

$$P_{y} = \frac{\sqrt{1 - \alpha^{2}} \sin\theta \cos\theta}{1 + \alpha \cos^{2} \theta} \sin(\Delta \Phi)$$

Complete measurement of Σ^+ EMFFs

- Polarization is observed at $\sqrt{s} = 2.396$, 2.644 and 2.90 GeV with a significance of 2.2σ , 3.6σ and 4.1σ .
- Relative phase is determined for the first time in a wide q^2 range.

arXiv: 2307.15894

Study of the spin 3/2 baryons: $e^+e^- \rightarrow \Delta \overline{\Delta}$

 $\Box e^+e^- \rightarrow \Delta^{++}\overline{\Delta}^{--}$ is searched with c.m.s in 2.3094 to 2.6464 GeV.

≻ No significant signal observed, but signal for $e^+e^- \rightarrow \Delta^{++}p\pi^-$ observed.

arXiv: 2305.12166

Study of the spin 3/2 baryons: $e^+e^- \rightarrow \Omega\overline{\Omega}$

■Born cross sections and effective FF of $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$ are measured at 8 energy points between $\sqrt{s} = 3.49$ and 3.67 GeV.

- ≻ No significant signal observed.
- > Upper limit of effective FF is consistent with pQCD driven prediction.

Summary

- Fruitful physics results of EMFFs from e⁺e⁻ colliders, via energy scan and ISR methods.
- More results from BESIII are on the way.

