Recent results of Baryon
electromagnetic form factors at BESIII

Tiantian Lei (on behalf of BESIII Collaboration)
 University of Science and Technology of China

The Third Windows on the Universe Conference 6-12 Aug 2023, Quy Nhon, Vietnam

Electromagnetic Form Factors (EMFFs)

- Electromagnetic Form Factors are fundamental properties of the Baryons

$>$ Connected to charge, current distribution
$>$ Crucial testing ground for models of the baryons' internal structure and dynamics

The baryon electromagnetic vertex Γ_{μ} describing the hadron current:

$$
\Gamma_{\mu}\left(p^{\prime}, p\right)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{v}}{2 m_{p}} F_{2}\left(q^{2}\right)
$$

$$
F_{1}\left(q^{2}\right): \text { Dirac }
$$

FF

Sachs FFs: $G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau \kappa_{p} F_{2}\left(q^{2}\right), G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\kappa_{p} F_{2}\left(q^{2}\right) \quad F_{2}\left(q^{2}\right)$: Pauli FF

Time-like EMFFs: theoretic review

1961, first paper by N. Cabibbo and R. Gatto Phys.Rev. 124 (1961) 1577-1595

- The production cross section of $e^{+} e^{-} \rightarrow B \bar{B}$ (1/2 baryon) is given:

$$
\frac{\mathrm{d} \sigma_{B \bar{B}}}{\mathrm{~d} \cos \theta}=\frac{\pi \alpha^{2} C \beta}{2 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2} \sin ^{2} \theta\right], \tau=\frac{q^{2}}{4 m_{B}^{2}}
$$

$$
\text { Integrated version: } \sigma_{B \bar{B}}=\frac{4 \pi \alpha^{2} C \beta}{3 q^{2}}\left[\left|G_{M}\right|^{2}+\frac{1}{2 \tau}\left|G_{E}\right|^{2}\right] \text { (Born cross section) }
$$

$$
\stackrel{\left|G_{E}\right|=\left|G_{M}\right|}{\Longrightarrow} \sigma_{B \bar{B}}=\frac{2 \pi \alpha^{2} C \beta}{q^{2}}\left|G_{\mathrm{eff}}\right|^{2}
$$

- The complex feature of TLFF leads to transversely polarized baryon even the beams are unpolarized. Nuov Cim A 109, 241-256 (1996)

$$
P_{y}=-\frac{\sin 2 \theta \operatorname{Im}\left[G_{E} \mathrm{G}_{M}^{*}\right] / \sqrt{\tau}}{\frac{\left|G_{E}\right|^{2} \sin ^{2} \theta}{\tau}+\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)}
$$

BESIII Experiment

BESIII experimentis a symmetric electron positron collider running at the tau-charm region $(2.00-4.95 \mathrm{GeV})$.

Super conducting magnet
$\checkmark 1$ Tesla
[Nucl. Instrum. Meth. A614, 345-399 (2010)]
Time of Flight (TOF)

- 2 layer plastic scintillators
- $\sigma_{\mathrm{T}} \approx 68 \mathrm{ps}$ (barrel)
- $\sigma_{\mathrm{T}} \approx 110 \mathrm{ps}$ (endcap) (~65 ps after upgradation with MRPC)
- Particle id

Muon system

- 9 layers of RPC
- $\mathbf{P}>400 \mathrm{MeV} / \mathrm{c}$
- $\delta R \phi \approx 1.4-1.7 \mathrm{~cm}$

Multilayer drift chamber (MDC)

- $\mathrm{He} / \mathrm{C}_{3} \mathrm{H}_{8}(\mathbf{6 0 / 4 0})$
- 43 layers
- Momentum resolution $\sigma_{p} / \mathbf{p} \approx 0.5 \%$ @ $\mathbf{1 G e V}$
- Spatial resolution $\sigma_{\mathrm{xy}} \approx \mathbf{1 3 0} \mu \mathrm{m}$.

BESIII Dataset

Recent results of neutron EMFFs

- Cross section and effective FF of $e^{+} e^{-} \rightarrow n \bar{n}$ measured from $\sqrt{s}=2.0-3.08 \mathrm{GeV}$, $647.9 \mathrm{pb}^{-1}$.
- $\gamma-p$ coupling larger than $\gamma-n$ coupling $=>$ consistent with theoretical limits from VMD, Skyrme etc.
- Oscillation of reduced-|G| observed in neutron with a phase orthogonal to that of proton.

Recent results of neutron EMFFs

$>\left|G_{E}\right|,\left|G_{M}\right|$ of neutron measured separately from $\sqrt{s}=2.0-2.95 \mathrm{GeV}$.
$>$ Compared with the FENICE results, the values for $\left|\mathrm{G}_{\mathrm{M}}\right|$ from this work are smaller by a factor of 2-3.
Results is compared with various models: pQCD, modified dipole, VMD and dispersion relations (DR), and DR model gives good consistency.

Measurement of Hyperons FFs

- It is difficult to study EMFFs of hyperons in space-like due to the difficulty in stable and high-quality hyperon beams.
- The hyperons can be produced in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation above their production threshold.
- The angular distribution of daughter baryon from Hyperon weak decay is:
$>\frac{d \sigma}{d \Omega} \propto 1+\alpha_{\Lambda} P_{y} \cdot \hat{q}$
$>\alpha_{\Lambda}$: asymmetry parameter (P -violation)
Advantages:
$>$ Cross section can be obtained very close to threshold with finite PHSP of final state.
$>$ With hyperon weak decay to $\mathrm{B}+\mathrm{P}$, the polarization of hyperon can be measured, so does the relative phase between G_{E} and G_{M} ! (Of course, enough statistics needed)

Cross section of $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$

- Cross section of $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$ is measured with $11.9 \mathrm{fb}^{-1}$ data collected from $\sqrt{s}=3.773$ to 4.258 GeV by ISR method.
- The non-zero cross section is consistent with previous measurement.

BESIII scan: $312 \pm 45_{-36}^{+66} \mathrm{pb}$ at $2.2324 \mathrm{GeV}(1 \mathrm{MeV}$ above threshold)
BaBar ISR: $204_{-60}^{+62} \pm 22 \mathrm{pb}$ in [2.23, 2.27$] \mathrm{GeV}$
BESIII ISR: $245 \pm 56 \pm 14 \mathrm{pb}$ in [2.231, 2.250] GeV, $283_{-55}^{+53} \pm 15 \mathrm{pb}$ in $[2.25,2.27] \mathrm{GeV}$

Cross section of $e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda}$

- A study of the cross section line shape to search for the source of the non-zero cross section has been performed.
- A model inspired by the perturbative QCD has been tried (blue dashed line in figure): Phys. Rep. 550.1 (2015)

$$
\sigma(s)=\frac{c_{0} \cdot \beta(s) \cdot C}{\left(\sqrt{s}-c_{1}\right)^{10}}
$$

- A model assuming a step exists near the threshold has been tried too (red solid line in figure): PRL 124.042001 (2020)

$$
\sigma(s)=\frac{e^{a_{0}} \pi^{2} \alpha^{3}}{s\left[1-e^{-\pi \alpha_{s} / \beta}\right]\left[1+\left(\frac{\sqrt{s}-2 m_{\Lambda}}{a_{1}}\right)^{a_{2}}\right]}
$$

- The latter gives a better description of the cross section.

PRD 107.072005 (2023)

Cross section of $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$

- Cross section of $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$is measured at 4 c . m. e close to the threshold, and ${ }^{\left|G_{E}\right|} /\left|G_{M}\right|$ is measured at two of them with larger statistics.
- A step in $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$cross section observed, similar to $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{p} \overline{\boldsymbol{p}}$, followed by a plateau.
- Cross section of first energy point (1.5 MeV above threshold) is $236 \pm 11 \pm 46 \mathrm{pb}$.

Cross section of $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$

- Measurements of cross section, $\left|G_{E}\right|,\left|G_{M}\right|$, and their ratio are performed at $\sqrt{s}=4.64$ 4.95 GeV .
- Flat cross sections around 4.63 GeV are obtained and no indication of the resonant structure Y (4630), as reported by Belle, is found.
- An oscillation behavior is observed in the energy dependence of ${ }^{\left|G_{E}\right|} /\left|G_{M}\right|$, for the first time. arXiv: 2307.07316

Complete measurement of Σ^{+}EMFFs

- An event of the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Sigma^{+}\left(\rightarrow \mathrm{p} \pi^{0}\right) \bar{\Sigma}^{-}\left(\rightarrow \overline{\mathrm{p}} \pi^{0}\right)$ is formalized by joint angular distribution:
$\mathcal{W}(\xi) \propto \mathcal{F}_{0}(\xi)+\alpha \mathcal{F}_{5}(\xi) \quad$ Unpolarized part
$+\alpha_{1} \alpha_{2}\left(\mathcal{F}_{1}(\xi)+\sqrt{1-\alpha^{2}} \cos (\Delta \Phi) \mathcal{F}_{2}(\xi)+\alpha \mathcal{F}_{6}(\xi)\right)$ Correlated part
$+\sqrt{1-\alpha^{2}} \sin (\Delta \Phi)\left(-\alpha_{1} \mathcal{F}_{3}(\xi)+\alpha_{2} \mathcal{F}_{4}(\xi)\right), \quad$ Polarized part
$\mathcal{F}_{0}(\xi)=1$
$\mathcal{F}_{1}(\xi)=\sin ^{2} \theta \sin \theta_{1} \sin \theta_{2} \cos \phi_{1} \cos \phi_{2}-\cos ^{2} \theta \cos \theta_{1} \cos \theta_{2}$
$\mathcal{F}_{2}(\xi)=\sin \theta \cos \theta\left(\sin \theta_{1} \cos \theta_{2} \cos \phi_{1}-\cos \theta_{1} \sin \theta_{2} \cos \phi_{2}\right)$
$\mathcal{F}_{3}(\xi)=\sin \theta \cos \theta \sin \theta_{1} \sin \phi_{1}$
$\mathcal{F}_{4}(\xi)=\sin \theta \cos \theta \sin \theta_{2} \sin \phi_{2}$
$\mathcal{F}_{5}(\xi)=\cos ^{2} \theta$

$$
P_{y}=\frac{\sqrt{1-\alpha^{2}} \sin \theta \cos \theta}{1+\alpha \cos ^{2} \theta} \sin (\Delta \Phi)
$$

$\mathcal{F}_{6}(\xi)=\sin ^{2} \theta \sin \theta_{1} \sin \theta_{2} \sin \phi_{1} \sin \phi_{2}-\cos \theta_{1} \cos \theta_{2}$.

- A nonzero relative phase leads to polarization p_{y} of the out going baryons:

Complete measurement of $\boldsymbol{\Sigma}^{+}$EMFFs

- Polarization is observed at $\sqrt{s}=2.396,2.644$ and 2.90 GeV with a significance of 2.2σ, 3.6σ and 4.1σ.
- Relative phase is determined for the first time in a wide q^{2} range.

Study of the spin $3 / 2$ baryons: $e^{+} e^{-} \rightarrow \Delta \bar{\Delta}$

$\square e^{+} e^{-} \rightarrow \Delta^{++} \bar{\Delta}^{--}$is searched with c.m.s in 2.3094 to 2.6464 GeV .
$>$ No significant signal observed, but signal for $e^{+} e^{-} \rightarrow \Delta^{++} \mathrm{p} \pi^{-}$observed.
arXiv: 2305.12166

Study of the spin $3 / 2$ baryons: $e^{+} e^{-} \rightarrow \Omega \bar{\Omega}$

\square Born cross sections and effective FF of $e^{+} e^{-} \rightarrow \Omega^{-} \bar{\Omega}^{+}$are measured at 8 energy points between $\sqrt{s}=3.49$ and 3.67 GeV .
$>$ No significant signal observed.
$>$ Upper limit of effective FF is consistent with pQCD driven prediction.

Summary

- Fruitful physics results of EMFFs from $\mathrm{e}^{+} \mathrm{e}^{-}$colliders, via energy scan and ISR methods.
- More results from BESIII are on the way.

Thank you!

