

Measuring Hadron Charge Radii with AMBER

Stephan Paul Technical University Munich and Max-Planck-Institute for **Physics Munich**

> August 2023 Quy Nhon - Vietnam

8.8.2023 Quy Nhon

Stephan Paul

Proton Radius Measurements

Bernauer et al., A1 coll. [PRL 105 242001 (2010)]

Pohl et al., CREMA coll. [Nature 466 213 (2010)]

Antognini et al., CREMA coll. [Science 339 417 (2013)]

Fleurbaey et al. [PRL.120 183001 (2018)]

Tiesinga et al. [Rev. Mod. Phys. 93 025010 (2021)]

Mihovilovič et al. [arXiv:1905.11182 (2019)]

Bezginov et al. [Science 365 1007 (2019)]

Xiong et al. [Nature 575, 147-150 (2019)]

Lin et al. [Phys. Lett. B 816 136254 (2021)]

Proton Radius Measurements

Proton Radius Measurements

.

Alternative techniques

- MUSE: low energy μ and e beams of both polarities
- COMPASS: high energy μ beams of both polarities (x 500 beam energy of MUSE!!)
 - beam energy irrelevant.. Q² is important variable (see details later)
 - COMPASS has demonstrated excellent Q² resolution with Primakoff reactions
 - Coulomb peak from πA scattering $\pi + Z$ -
 - well performing spectrometer and well understood apparatus

$$\rightarrow \pi + \gamma + Z_{recoil} - \Delta Q^2 \approx 5 \times 10^{-4} (GeV/c)^2$$

Proposal of a New Measurement

 $\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} R \left(\varepsilon G_E^2 + \tau G_M^2\right)$ $< r_p^2 > = -6\hbar^2 \cdot \frac{dG_E(Q^2)}{dQ^2}$

8.8.2023 Quy Nhon

Proposal of a New Measurement

$$< r_p^2 > = -6\hbar^2 \cdot \frac{dG_E(Q^2)}{dQ^2} \qquad \qquad \qquad \frac{d\sigma}{dQ^2} = \frac{4}{dQ^2}$$

- Measure close to $Q^2 \rightarrow 0$
- \rightarrow suppress influences from higher order terms (fit)
- \rightarrow high-energy $\mathcal{O}(10 100 \text{ GeV}) \text{Cross-section} \propto (G_E^P(Q^2))^2$
- Sufficient Q² range to determine radius:
- \rightarrow Aimed precision better 1 %
- \rightarrow Aimed Q²-range: 0.001 0.04 (GeV/c)²

 $\frac{4\pi\alpha^2}{Q^4} R \left(\varepsilon G_E^2 + \tau G_M^2\right)$

Stephan Paul

Proposal of a New Measurement

$$< r_p^2 > = -6\hbar^2 \cdot \frac{dG_E(Q^2)}{dQ^2} \qquad \qquad \qquad \frac{d\sigma}{dQ^2} = \frac{4}{dQ^2}$$

- Measure close to $Q^2 \rightarrow 0$
- \rightarrow suppress influences from higher order terms (fit)
- \rightarrow high-energy $\mathcal{O}(10 100 \text{ GeV}) \text{Cross-section} \propto (G_E^P(Q^2))$
- Sufficient Q² range to determine radius:
- \rightarrow Aimed precision better 1 %
- \rightarrow Aimed Q²-range: 0.001 0.04 (GeV/c)²
- Below $Q^2 = 0.001 \text{ GeV}^2/c^2$:
- \rightarrow Deviation from point-like proton level of $\mathcal{O}(10^{-3})$
- \rightarrow systematic effects e.g. Q² resolution
- Above $Q^2 = 0.04 \ (GeV/c)^2$
- \rightarrow Non-linearity of the cross section
- \rightarrow Predominant source of uncertainty

 $\frac{4\pi\alpha^2}{\Omega^4} R \left(\varepsilon G_E^2 + \tau G_M^2\right)$

Stephan Paul

Beamline for High-Energy Muon Beams

M2 beamline at CERN's SPS North Area of CERN : M2 beamline provides a unique high-intensity muon beam

- Muon momenta up to 200 GeV/c flux up to $10^7 \mu/s$
- PRM: beam momentum of 100 GeV/c and 2 MHz beam rate
- AMBER as successor at COMPASS location starting 2023 with the first full PRM pilot run in 10/2023

 \rightarrow broad physics program: PRM, Drell-Yan, Anti-Proton Cross-Section, use RF separated beams (plan)

The AMBER µP measurement

- Choose scattering of high energy muons of gaseous hydrogen
- bigh energy muons have little multiple scattering good measurement of scattering angle high energy muons do not radiate (little)
- muon energy loss very small - basically no useable information from muon momentum \Rightarrow need to measure recoil proton

low energy recoil protons carry information about Q² \Rightarrow measure their energy via an active target

keep the advantages and circumvent the disadvantage by excellent instrumentation

- 100 GeV muon beam
- Active-target TPC with high-pressure H₂ • goal: 70 million elastic scattering events in the range $10^{-3} < Q^2 < 4 \cdot 10^{-2} (GeV/c)^2$
- Precision on the proton radius ~0.01 fm

- 100 GeV muon beam
- Active-target TPC with high-pressure H₂ • goal: 70 million elastic scattering events in the range $10^{-3} < Q^2 < 4 \cdot 10^{-2} (GeV/c)^2$
- Precision on the proton radius ~0.01 fm

- 100 GeV muon beam
- Active-target TPC with high-pressure H₂
- Precision on the proton radius ~0.01 fm

• goal: 70 million elastic scattering events in the range $10^{-3} < Q^2 < 4 \cdot 10^{-2} (GeV/c)^2$

- 100 GeV muon beam
- Active-target TPC with high-pressure H₂
- Precision on the proton radius ~0.01 fm

• goal: 70 million elastic scattering events in the range $10^{-3} < Q^2 < 4 \cdot 10^{-2} (GeV/c)^2$

Summary and Outlook

High-energy elastic muon-proton scattering — **Ongoing Preparations - promising developments**

- New approach elastic muon-protons scattering at E_{μ} = 100 GeV
- → Redundant measurement to control systematic effects
- \rightarrow Radiative corrections (factor 5-10) smaller compared to electron-proton scattering
- \rightarrow Additional dataset to contribute to a solution of the puzzle

PRM@AMBER

Time schedule

- \rightarrow New detector systems with novel triggerless DAQ — many beam tests (2019-2023)
- \rightarrow Physics physics runs foreseen 2024 2025

figure: J. Bernauer **Stephan Paul**

Hadron Charge Radii **Through Elastic Hadron-Lepton Scattering** at low Q²

Protons in hydrogen target (or other stable nuclei): Measurement via elastic electron or muon scattering Cross section:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} R \left(\varepsilon G_E^2 + \tau G_A^2\right)$$

Charge radius from the slope of G_E

$$\langle r_E^2 \rangle = -6\hbar^2 \left. \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2} \right|_{Q^2 \to 0}$$

 $p' = (P_0, p')$

Protons in hydrogen target (or other stable nuclei): Measurement via elastic electron or muon scattering Cross section:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} R \left(\varepsilon G_E^2 + \tau G_A^2\right)$$

Charge radius from the slope of G_E

$$\langle r_E^2 \rangle = -6\hbar^2 \left. \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2} \right|_{Q^2 \to 0}$$

For unstable particles, electron scattering can only be realised in *inverse kinematics*

meson

Hadron Radius Measurements

From: EPJC 8 (**1999**) 59, The WA89 Collaboration (measurement of Σ^- charge radius) updated 21.6.2022

Measured $\langle r_{ch}^2 \rangle$ in fm^2 of various hadrons

experiment	
year	
2023	
unmeasured	
2021	
2001	
1986	
1986	
e ⁺ e ⁻ 1998	e^+e^-

comparatively good accuracies (pion radius ~2%) stem from assuming a theoretical shape of the form factor

Measuring Hadron Charge Radii in **Inverse Kinematics**

Why using inverse kinematics ?

- with no stable meson target existing use stable lepton target
 - hadron is beam particle —> reaction in inverse kinematics
- kinematic range experimentally "unreachable"
 - make use of "easily" measurable quantities to address "difficult regime" (mostly low Q²)
- electron initially at rest —> no initial external Bremsstrahlung
- final electron is accelerated —> external Bremsstrahlung for outgoing electron
 - impact on particle momentum
 - Impact on particle trajectory -
- internal Bremsstrahlung effects independent of reference system (vertex corrections)

What is the role of Q_{max}^2

- large values of Q²: higher sensitivity to charge distribution —> $< r_E^2 >$
- • small values of Q²: smaller extrapolation uncertainties to Q² = 0 and $\frac{dF(Q^2)}{dQ^2}$

Beam	Ebeam	Q_{max}^2	Relative charge-radiu
	[GeV]	[GeV ²]	effect on σ(Q²)
π	280	0,268	~54%
K	280	0,15	~30%
K	80	0,021	~5%
K	50	0,009	~2-3%
р	280	0,070	~28%

Setup for solid target

- compress set-up
- Q² via three independent measurements θ_e , θ_p , p'_{hadron} \bullet

solid target (e.g. 1-25 mm Be) offers large acceptance for outgoing electron

compact set-up

Simulate Results for Kaons and Pions

Assume 30 days of beam time (100% efficiency) - use pole description for FF \bullet

Nucleons in Inverse Kinematics

Inverse kinematics allows easy way to access difficult *ep* kinematics

- kinematic variables R, ε , τ $\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4}R\left(\epsilon \cdot G_E^2 + \tau \cdot G_M^2\right)$
- •

 ϵ : photon polarization τ : reduced Q^2 **R:** normalization

use different nucleon beam momenta to access $G_M^2(Q^2)$

- Rosenbluth separation allows for extract $G^p_M(Q^2)$ at low Q² !
- presently knowledge data only for $Q^2 > 0.02(GeV/c)^2$ (Mainz data)
- Inverse kinematics could add kinematically $0.004 > Q^2 > 0.04(GeV/c)^2$
- first measurement in this kinematic range for this quantity !
- equivalent incoming electron energies: 30-105 MeV

use 10 different settings (energy/target thickness) - assume 130 days of beam time (100% efficiency) perform Rosenbluth separation and fit σ_R versus ϵ

$$\sigma_R = \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}$$

error bars depend on fitting method (very preliminary)

Extraction of $G^p_M(Q^2)$ and $G^p_F(Q^2)$

use 10 different settings (energy/target thickness) - assume 130 days of beam time (100% efficiency) perform Rosenbluth separation and fit σ_R versus ϵ

$$\sigma_R = \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}$$

error bars depend on fitting method (very preliminary)

Extraction of $G^p_M(Q^2)$ and $G^p_F(Q^2)$

use 10 different settings (energy/target thickness) - assume 130 days of beam time (100% efficiency) perform Rosenbluth separation and fit σ_R versus ϵ

$$\sigma_R = \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}$$

error bars depend on fitting method (very preliminary)

Extraction of $G^p_M(Q^2)$ and $G^p_F(Q^2)$

Charge Radius of Antiprotons

- Use data taking mode with pions assume 30 days (no variation of E_{in}^{beam})
- use energy dependent fraction of \overline{p} in pion beam

Charge Radius of Antiprotons

- Use data taking mode with pions assume 30 days (no variation of E_{in}^{beam})
- use energy dependent fraction of \overline{p} in pion beam
- perform Rosenbluth separation and fit σ_R versus ϵ and obtain $G_E^{\overline{p}}(Q^2) = \sigma_R = \left(\frac{d\sigma}{d\Omega}\right) / \left(\frac{d\sigma}{d\Omega}\right)_M$

Summary Inverse Kinematics

- Meson radii are of key interest in understanding their inner structure and the emergence of hadron mass
- pions : data of previous experiments can be challenged (statistics !! + systematics) \bullet
- kaons : significant increase of the form factor knowledge in the range \bullet $10^{-4} < Q^2 < 0.15 [(GeV/c)^2]$ (factor 10)
- large Q^2 range possible (in particular down to very small Q^2) \bullet accessible Q² range determined by detection requirements for outgoing electron
- Proton inverse kinematics allows low Q² kinematics and Rosenbluth separation $G_M^p(Q^2)$ \bullet Antiprotons: First ever measurements of form factors (incl. Rosenbluth separation) \bullet

