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Alternative	techniques

• MUSE:	low	energy	µ	and	e	beams	of	both	polarities	

• COMPASS:	high	energy	µ beams	of	both	polarities	(	x	500	beam	energy	of	MUSE!!) 
– beam	energy	irrelevant..		Q2	is	important	variable	(see	details	later)	

– COMPASS	has	demonstrated	excellent	Q2		resolution	with	Primakoff	reactions		

– Coulomb	peak	from	 	scattering	 		-	 	

– well	performing	spectrometer	and	well	understood	apparatus	

………………

πA π + Z → π + γ + Zrecoil ΔQ2 ≈ 5 × 10−4(GeV/c)2
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Proposal	of	a	New	Measurement
J. C

. B
ernauer
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Proposal	of	a	New	Measurement

•Measure close to Q2 → 0
→ suppress influences from higher order terms (fit)
→ high-energy 𝓞(10 - 100 GeV) — Cross-section ∝ (GP

E(Q2))2

•Sufficient Q2  range to determine radius:
→ Aimed precision better 1 %
→ Aimed Q2-range: 0.001 - 0.04 (GeV/c)2
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Proposal	of	a	New	Measurement

•Measure close to Q2 → 0
→ suppress influences from higher order terms (fit)
→ high-energy 𝓞(10 - 100 GeV) — Cross-section ∝ (GP

E(Q2))2

•Sufficient Q2  range to determine radius:
→ Aimed precision better 1 %
→ Aimed Q2-range: 0.001 - 0.04 (GeV/c)2

• Below Q2 = 0.001 GeV2/c2:
→ Deviation from point-like proton level of 𝓞(10-3)
→ systematic effects e.g. Q2 resolution
• Above Q2 = 0.04  (GeV/c)2

→ Non-linearity of the cross section
→ Predominant source of uncertainty
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ernauer

4Stephan Paul8.8.2023 Quy Nhon

< r2
p > = − 6ℏ2 ⋅

dGE(Q2)
dQ2



Beamline	for	High-Energy	Muon	Beams

• Muon momenta up to 200 GeV/c  - flux up to 107 µ/s  
• PRM: beam momentum of 100 GeV/c and 2 MHz beam rate 

• AMBER as successor at COMPASS location starting 2023 with the first full PRM pilot run in 10/2023 
→ broad physics program: PRM, Drell-Yan, Anti-Proton Cross-Section, use RF separated beams (plan)

M2 beamline
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AMBER

M2 beamline at CERN’s SPS 
North Area of CERN :  M2 beamline provides a unique high-intensity muon beam



The	AMBER	μP	measurement	

Choose scattering of high energy muons of gaseous hydrogen
👍 high energy muons have little multiple scattering - good measurement of scattering angle
👍 high energy muons do not radiate (little)
👎    muon energy loss very small - basically no useable information from muon momentum 
        ⇒ need to measure recoil proton 

👎   low energy recoil protons carry information about Q2 
        ⇒ measure their energy via an active target

👍 keep the advantages and circumvent the disadvantage by excellent instrumentation  
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• 100 GeV muon beam  
• Active-target TPC with high-pressure H2  
• goal: 70 million elastic scattering events in the range  
• Precision on the proton radius ~0.01 fm

10−3 < Q2 < 4 ⋅ 10−2 (GeV/c)2

Proton	Radius	from	
	Muon-Proton	Elastic	Scattering	at	High	Energy
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• 100 GeV muon beam  
• Active-target TPC with high-pressure H2  
• goal: 70 million elastic scattering events in the range  
• Precision on the proton radius ~0.01 fm

10−3 < Q2 < 4 ⋅ 10−2 (GeV/c)2
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Summary and Outlook 
High-energy elastic muon-proton scattering — PRM@AMBER 
Ongoing Preparations - promising developments 
• New approach - elastic muon-protons scattering at Eµ = 100 GeV 
→ Redundant measurement to control systematic effects 
→ Radiative corrections (factor 5-10) smaller compared to electron-proton scattering 
→ Additional dataset to contribute to a solution of the puzzle 
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Time schedule 
→ New detector systems with novel     

      triggerless DAQ — many beam tests 
      (2019-2023) 
→ Physics physics runs foreseen 2024 - 2025 
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Hadron	Charge	Radii		
Through	Elastic	Hadron-Lepton	Scattering	

at	low	Q2

Protons in hydrogen target (or other stable nuclei): 
Measurement via elastic electron or muon scattering 
Cross section:

Charge radius from the slope of GE

lepton

proton
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Hadron	Charge	Radii		
Through	Elastic	Hadron-Lepton	Scattering	

at	low	Q2

Protons in hydrogen target (or other stable nuclei): 
Measurement via elastic electron or muon scattering 
Cross section:

Charge radius from the slope of GE

For unstable particles, electron scattering can only be realised 
in inverse kinematics

lepton

proton

electron

meson
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meson
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Hadron	Radius	Measurements

From: EPJC 8 (1999) 59, The WA89 Collaboration (measurement of  charge radius)Σ−

0.61 ± 0.12 ± 0.09
−0.1101 ± 0.0086

≈ 0.84 − 0.87

updated	21.6.2022

−0.077 ± 0.007 ± 0.011K0
L K0

L → π−π+e+e−

1986

2023

1986

2021
2001

1998

experiment	
year

comparatively good 
accuracies (pion radius ~2%) 

stem from assuming a 
theoretical shape of the form 

factor

p unmeasured



Measuring	Hadron	Charge	Radii	in		
Inverse	Kinematics

Why	using	inverse	kinematics	?	
‣ with	no	stable	meson	target	existing	-	use	stable	lepton	target	

- hadron	is	beam	particle	—>	reaction	in	inverse	kinematics	

‣ kinematic	range	experimentally	„unreachable“	
- make	use	of	„easily“	measurable	quantities	to	address	„difficult	regime“	(mostly	low	Q2)	

• electron	initially	at	rest	—>	no	initial	external	Bremsstrahlung	
• final	electron	is	accelerated	—>	external	Bremsstrahlung	for	outgoing	electron	

- impact	on	particle	momentum	
- Impact	on	particle	trajectory	

• internal	Bremsstrahlung	effects	independent	of	reference	system	(vertex	corrections)
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What	is	the	role	of	Q2
max

• large	values	of	Q2:	higher	sensitivity	to	charge	distribution	—>	 	

• small	values	of	Q2:	smaller	extrapolation	uncertainties	to	Q2	=	0	and		

< r2
E >

dF(Q2)
dQ2

|Q2=0
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Beam Ebeam	 
[GeV] [GeV2]

Relative	charge-radius		

effect	on	σ(Q2)
π 280 0,268 ~54%

K 280 0,15 ~30%
K 80 0,021 			~5%
K 50 0,009 ~2-3%
p 280 0,070 ~28%

Q2
max
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Setup	for	solid	target
• solid	target	(e.g.	1-25	mm	Be)	offers	large	acceptance	for	outgoing	electron	
• compress	set-up	

• Q2	via	three	independent	measurements	-	θe , θp , p′ hadron
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Simulate	Results	for	Kaons	and	Pions

• Assume	30	days	of	beam	time	(100%	efficiency)	-	use	pole	description	for	FF
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pion

δrπ /rπ ≈ 0.3 %

kaon

δrK /rK ≈ 2 %



Inverse	kinematics	allows	easy	way	to	access	difficult	ep	kinematics	

• kinematic	variables	R,	ε,	τ	

• access	Rosenbluth	technique	through	variation	of	pbeam

Nucleons	in	Inverse	Kinematics
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dσ
dQ2

=
4πα2

Q4
R (ϵ ⋅ G2

E + τ ⋅ G2
M)
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	photon	polarization	
	reduced	 	

R:		normalization

ϵ :
τ : Q2

use	different	nucleon	beam	
momenta	to	access	 	G2

M(Q2)
high	energy	muon	scattering:		
little	sensitivity	to		 	G2

M(Q2)



Gp
M(Q2)

• Rosenbluth	separation	allows	for	extract	 	at	low	Q2	!	

• presently	-	knowledge	data	only	for		 	(Mainz	data)	

• Inverse	kinematics	could	add	kinematically	 	

• first	measurement	in	this	kinematic	range	for	this	quantity	!	
• equivalent	incoming	electron	energies:	30-105	MeV

Gp
M(Q2)

Q2 > 0.02(GeV/c)2

0.004 > Q2 > 0.04(GeV/c)2
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Extraction	of	Gp
M(Q2) and Gp

E(Q2)

use	10	different	settings	(energy/target	thickness)	-	assume	130	days	of	beam	time	(100%	efficiency)	

perform	Rosenbluth	separation	and	fit	 	

• error	bars	depend	on	fitting	method	(very	preliminary)

σR versus ϵ
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Charge	Radius	of	Antiprotons

• Use	data	taking	mode	with	pions	-	assume	30	days	(no	variation	of	 )Ebeam
in

• use	energy	dependent	fraction	of	 	in	pion	beamp

20

parasitic	running	with	pion

δrp /rp ≈ 4 %

ant
ipro

ton
s

M2	beam	@	CERN	SPS



Charge	Radius	of	Antiprotons

• Use	data	taking	mode	with	pions	-	assume	30	days	(no	variation	of	 )Ebeam
in

• use	energy	dependent	fraction	of	 	in	pion	beamp
• perform	Rosenbluth	separation	and	fit	 	and	obtain	 	σR versus ϵ Gp

E(Q2)

20

parasitic	running	with	pion

δrp /rp ≈ 4 %

dedicated	running	like	protons

Gp
E(Q2)

ant
ipro

ton
s

M2	beam	@	CERN	SPS
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Summary	Inverse	Kinematics

• Meson radii are of key interest in understanding their inner structure and the emergence of 
hadron mass 

• pions : data of previous experiments can be challenged (statistics !! + systematics) 

• kaons : significant increase of the form factor knowledge in the range 
 (factor 10) 

• large Q2 range possible (in particular down to very small Q2) 
accessible Q2  range determined by detection requirements for outgoing electron 

•      Proton inverse kinematics allows low Q2 kinematics and Rosenbluth separation  
•      Antiprotons: First ever measurements of form factors (incl. Rosenbluth separation)

10−4 < Q2 < 0.15 [(GeV/c)2]

Gp
M(Q2)

Stephan Paul8.8.2023 Quy Nhon




