nu cleus Experiment

Exploring coherent elastic neutrino-nucleus scattering with the NUCLEUS experiment

Rencontres du Vietnam,

30th anniversary Windows on the Universe 6-12 August 2023

Cea irfu Chloé Goupy, on behalf of the NUCLEUS collaboration IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

The NUCLEUS collaboration

≈ 50 members

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

$CE\nu NS$ from reactor (anti-)neutrinos

Coherent Elastic Neutrino-Nucleus Scattering

Nuclear reactors: intense sources of $\overline{\nu_{e}}$

 $E_{\nu} < 10 \text{ MeV} \rightarrow \text{fully coherent regime}$ \Rightarrow sub-keV recoils

Trade-off between cross-section and nuclear recoil energy

⇒ Low thresholds detectors and low background counting rate required

$CE\nu NS$, what for?

The NUCLEUS Experiment

Gram-scale cryogenic calorimeters

nu/cleus

Multi target approach

$3x3 \text{ array of } Al_2O_3(4g)$: essentially background

- Nominal energy baseline resolutions achieved on single detector cubes:
 - $4eV(Al_2O_3)$ •
 - 6eV (CaWO₄) •
- Two detector cubes successfully operated in silicon holder

Holding plates (electrical & thermal contacts)

Inner veto

Instrumented Si holder

- \rightarrow Si wafers equipped with TES
- \rightarrow Reject surface events

 \rightarrow Reject mechanical stress relaxation-induced events

100

200

Low energy calibration

High purity Germanium Cryogenic Outer Veto

2.5-cm thick six high purity Germanium Crystals (4kg)

Active shielding against external backgrounds

- Read-out in ionization mode
- 4π -coverage active veto
- Fast detector response
- Anti-coincidence with bolometric detectors
- 1-10keV threshold

Cylindric crystals tested and validated, under integration at the commissioning site

Rectangular crystals under tests

Cold and warm acquisition electronic

- Cold J-FET-based pre-amplification (300K) + low noise cold electronics (4K)
- Warm amplification with AMPTEK A250

Holding structure

Cage structure mock-up ready for mechanical tests

Cryogenic detector operation

Dedicated vibration decoupling system Alexander Wex, PhD student, TUM

(patent pending)

- > 4 weeks continuous operation of cryogenic detector with 6 eV baseline resolution achieved using a NUCLEUS CaWO₄ crystal
- Detector operation largely independent of pulse tube vibrations
- Successful cooldown of full system to base temperature achieved repeatedly
- RMS reduced by a factor of 30

Kevlar suspension

Chloé Goupy

Plastic scintillator based Muon Veto External muon veto 28x 5-cm thick scintillating plastics read out with Cold muon veto WLS-fibers and Silicon PhotoMultipliers @800mK Data acquisition with struck FADC module SiPM control voltage controlled via arduino Muon veto prototype publication (V. Wagner et al 2022 JINST 17 T05020) Number of events 1600 Gamma 1400 background 1200 1000 800 600 muon peak 400

Muon Veto assembled and commissioned at TUM

.

•

nu)cleus

EXPERIMENT

Passive shielding layers

Cryogenic shielding

5cm-thick lead 🖛

 \rightarrow Shields against ambient gammas

20cm-thick 5% borated polyethylene -

- \rightarrow Reduces the impact of secondary neutrons
- \rightarrow Moderates and attenuates atmospheric neutrons

Cryogenic passive shielding:

- Successful cooldown of PE, Pb, Cu & Muon Veto (≈ 50 kg)
 - \rightarrow Thermalized to 0.8K in 11 days
- B4C shielding design on-going

Commissioning on-going at TUM underground lab

From simulation:

Background contribution Rates in kg ⁻¹ d ⁻¹ (Preliminary)	CaWO ₄ array		
	10-100 eV	100 eV – 1 keV	1 keV – 10 keV
Ambient gammas ⁽¹⁾	$0.5^{+0.9}_{-0.3}$	$4.1^{+1.7}_{-1.4}$	92 ± 7
Atmospheric muons ⁽¹⁾	$1.2^{+0.9}_{-0.8}$	$2.7^{+1.3}_{-1.1}$	9.3 ± 1.9
Atmospheric neutrons ^(1,2)	5.6 ± 2.0	14.7 ± 5.3	57 ± 20
Total	$7.3^{+2.3}_{-2.2}$	$21.5^{+5.7}_{-5.6}$	158 ± 21
CEvNS signal	≈ 30	≈ 9	-

⁽¹⁾From measured gamma, muon, neutron fluxes

⁽²⁾Considering the measured high energy neutrons attenuation of $6.63^{+3.15}_{-1.65}$ from the building

Goal of background level of 100 counts/(keV kg d) in reach

⇒ What about the unknown background(s)? Excess in the low energy range ?

A. Fuss, et al. arXiv:2202.05097

EXCESS Workshop, Data Repository, <u>https://github.com/fewagner/excess</u>

Chloé Goupy

From blank assembly towards on-site installation

Beginning 2024

Design phase

Blank Assembly & commissioning

 \rightarrow Mechanical integration tests

 \rightarrow Calibrations at sub-keV energies

- LED
- XRF
- Neutrons with CRAB
- \rightarrow Detector performances

Long run measurement → Background studies at sub-keV (EXCESS) → Validate background strategy

On-site installation

2024

NUCLEUS-10g physics run Phase 1: observe CEvNS

2022

Towards NUCLEUS-1kg

Phase 2: measure $CE\nu NS$ at the several % level

Chloé Goupy

The NUCLEUS Experiment – Rencontres du Vietnam – Aug 8th 2022

202...

Thanks for your attention

https://nucleus-experiment.org

Rencontres du Vietnam,

30th anniversary Windows on the Universe 6-12 August 2023