LEGEND experiment: status and outlook

Valentina Biancacci

on behalf of the LEGEND collaboration

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Scuola Universitaria Superiore

Rencontres du Vietnam

08.08.2023

Double beta-decay without neutrinos

The neutrinoless double beta ($0\nu\beta\beta$) decay is a hypothesized nuclear transition.

> "creation of matter $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$ without antimatter"

 $0\nu\beta\beta$ can be mediated by the exchange of two massive Majorana neutrinos.

$$\frac{1}{T_{1/2}^{0\nu}} = |M^{0\nu}|^2 G^{0\nu}(Q, Z) \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$

nuclear matrix element phase space factor
$$\langle m_{\beta\beta} \rangle = \left|\sum_i U_{ei}^2 m_i\right| \quad \text{effective neutrino mass}$$

Motivation for $0\nu\beta\beta$ decay searches

- Establish lepton number violation (LNV) $\rightarrow \Delta L=2$
- Best way to determine if neutrino is its own antiparticle ($\nu = \bar{\nu}$)
- Important to understand the origin of the neutrino mass
- Probe the absolute neutrino mass scale and neutrino mass ordering
- Provide important input to cosmology

$\mathbf{0} \mathbf{v} \boldsymbol{\beta} \boldsymbol{\beta}$ signature and half-life

LEGEND

$$T_{1/2}^{0
u} \propto \left\{ egin{array}{c} \epsilon \cdot a \cdot \sqrt{rac{M \cdot t}{BI \cdot \Delta E}} & ext{with background} \ \epsilon \cdot a \cdot M \cdot t & ext{without background} \end{array}
ight.$$

 ϵ : detection efficiency a: isotopic abundance M: total detector mass t: run time BI: background index ΔE : energy resolution at $Q_{\beta\beta}$

Desirable design for an experiment searching for $0\nu\beta\beta$ signal

- Low background level
- Good energy resolution of the detector
- Large Q_{ββ}
- Large exposure

LEGEND = Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay

270+ members, 50+ institutions, 11 countries Collaboration formed in October 2016

LEGEND mission:

"The collaboration aims to develop a phased Ge-76 based double beta decay experimental program with discovery potential at a half-life significantly longer than 10²⁸ years, using existing resources as appropriate to expedite physics results".

LEGEND collaboration

LEGEND

LEGEND-1000

Majorana Demonstrator

÷

completed in ~

2020

Best energy resolution 2.52 \pm 0.08 KeV FWHM at Q_{BB} Lowest background index (BI) 5.2 $^{+1.6}_{-1.3}$ · 10⁻⁴ cts/(keV kg yr)

Situated in the existing GERDA infrastructure at LNGS

data taking started in

2023

Emerged as the portfolio review winner in all but one category

first data in ~

2031

LEGEND-200

First Stage

- [LEGEND, AIP 894:020027 (2017)]
- Upgrade of the existing infrastructure of GERDA experiment
- ~200 kg of detector mass: 35 kg from GERDA + 30 kg from MJD + 140 kg which are new, distributed to 14 strings rest of the detectors in early 2024
- Current data taking with ~142 kg of detectors deployed in LAr
- Reduction of the BI of a factor 2.5 w.r.t. GERDA Phase II results
- Total planned exposure 10 times larger than GERDA, up to 1 ton yr
- Expected energy resolution at $Q_{\beta\beta}$ equal to 2.5 keV FWHM

L200 Goals

half-life discovery sensitivity mass sensitivity background index

10²⁷ yrs 30-70 meV 2 · 10⁻⁴ cts/(keV · kg · yr)

Valentina

[LEGEND, arxiv:2107.11462 (2021)]

Further Stage

- Staged installation of 1000 kg detector mass (ICPC)
- Detector strings immersed in radiopure underground LAr (UGLAr)
- Background reduction of a factor 50 w.r.t. GERDA Phase II results
- Location to be defined (SNOLAB or LNGS)

L1000 Goals

half-life discovery sensitivity mass sensitivity background index 10²⁸ yrs 10-20 meV 10⁻⁵ cts/(keV · kg · yr)

Biancacci

08.08.2023

2023

Rencontres du Vietnam

Why germanium detectors?

- High detection efficiency (detector = $\beta\beta$ source)
- Best proved energy resolution at the Q-value
- High pulse shape analysis capabilities
- Lowest background per FWHM energy resolution in the field
- Well-established technology

Inverted Coaxial Point Contact (ICPC) detectors:

- Enriched detectors, 92% of detector material is ⁷⁶Ge
- Excellent resolution and pulse shape discrimination
- Significantly larger w.r.t. BEGe or PPC (up to 3 kg)
- Less channels, less background
- Better surface to volume-ratio (30-40%)

Liquid Argon veto and monitoring

- The LAr scintillation-light detector acts as an active shield from any backgrounds source in the materials surrounding the array
- It is read out via wavelength-shifting (WLS) fibers coupled to SiPMs.
- Liquid Argon Veto suppresses the background events that deposit energy in the Ar
- Argon cryostat: cools detectors to approximately 87 K
- It has proven successful in GERDA and is being implemented in LEGEND-200 as two-barrel geometry.

Valentina

Active background reduction tools

 ββ decay signal: single-site event energy deposition in a 1 mm³ volume

- Anti-coincidence with the muon veto
- Anti-coincidence between detectors (cuts multi-site)
- Active veto using LAr scintillation (LAr Veto)
- Pulse shape discrimination (PSD)

LEGEND-200: current status

- Location at hall A, LNGS: muon flux is reduced by 6 orders of magnitude respect to the surface
- HPGe:
 - 12 string array
- Low Mass Front End
- LAr:
 - 64 m³ LAr Volume in a stainless steel cryostat
 - 58 read-out modules of SiPMs coupled to WLS fibers
- Electroformed copper plates
 - produced underground at SURF
- Ultrapure water tank:
 - \circ shields n, γ
 - 66 PMTs (Cherenkov) + plastic scintillators for µ

LEGEND-200: current status

Stable data taking since March 12th :

- 142 kg of detectors
- $> 2 \text{ kg} \cdot \text{yr} / \text{week}$
- 100 kg · yr by the end of the year

Energy resolution:

- FWHM ~ 2.4 keV at Q_{BB}
- ICPC detectors already fulfilling L1000 goals

Energy stability:

- shifts monitored between subsequent calibrations
- extremely stable for 120 kg of detectors

6.0

5.5

FWHM at 2039 keV (keV) 7.2 8 4.0 7.2 8 4.0 7.2 10 7

2.5

2.0

30

25

20

5

energy shifts at $Q_{\beta\beta} = 2039$ keV (keV)

events / 0.1 keV 10

LEGEND-1000: prospects

- Flat background no γ peaks close to Q_{BB}
- Unambiguous discovery of 0vββ achievable even with a handful of counts - signal will be visible to the eye

- LEGEND will search for $0\nu\beta\beta$ decay in ⁷⁶Ge via 2 stages.
- LEGEND-200 is currently taking data with >120 kg in a stable manner.
- Background Index for LEGEND-200 is anticipated in late summer and the first Onbb result will be announced in 2024
- LEGEND-1000 is in the design stage and aims to fully cover inverted hierarchy
- More about LEGEND in https://legend-exp.org

/alentina