Windows on the Universe

Rencontres du Vietnam - 30th Anniversary

6-12 August, 2023 - Quy Nhon, Vietnam

The CUORE and CUPID double beta decay experiments

Stefano Ghislandi, on behalf of the CUORE and CUPID collaboration

Double Beta Decay $(2\nu\beta\beta)$

$$\beta^{-}\beta^{-} \qquad (A,Z) \longrightarrow (A,Z+2) + 2e^{-} + 2\bar{\nu}_{e}$$

$$\beta^{+}\beta^{+} \qquad (A,Z) \longrightarrow (A,Z-2) + 2e^{+} + 2\nu_{e}$$

- 2nd order SM process
- Only even mass number nuclei (i.e. ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe)
- \Box Half-lives in the order of 10^{18} - 10^{21} yr
- □ Precision measurements of the spectral shape → tests of the nuclear models

Neutrinoless Double Beta Decay $(0\nu\beta\beta)$

PARAMETER OF INTEREST

Cryogenic Underground Observatory for Rare Events

- Experiment running since 2017 in the Gran Sasso underground laboratories in Italy (~ 3600 m.w.e.)
- 988 TeO₂ crystals operated at ~ 15 mK with natural ¹³⁰Te abundance
- Low background index ~ 10⁻² counts / keV / kg / yr and good energy resolution ~ 7.8 keV FWHM @ Q_{ββ}

CUORE: $2\nu\beta\beta$ results

SPECTRAL FIT

- ¹³⁰Te $2\nu\beta\beta$ component from background model fit to single hits (M1) data
- □ ¹³⁰Te $2\nu\beta\beta$ > 50% of events in the 1-2 MeV energy region

SYSTEMATICS

- 2 model (SSD vs HSD)
- ⁹⁰Sr inclusion (high correlations)
- Detector geometrical splitting

CUORE: 0νββ results (2)

CUORE background

From CUORE to CUPID

DETECTOR TECHNOLOGY

TeO₂ cryogenic calorimeters equipped with NTDGe thermal sensors

- Tonne scale experiment at millikelvin temperatures
- Pure thermal detector
- $\square \quad ^{130}\text{Te} \rightarrow \text{High natural abundance (34\%)}$
- □ Q(¹³⁰Te) ~ 2527 keV
- No Particle IDentification

DETECTOR TECHNOLOGY

Li₂MoO₄ scintillating calorimeters (NTDGe readout) + Ge light detectors (NTDGe / Neganov-Trofimov-Luke / TES)

- □ Scintillating crystals → *heat* + *light* measurement
- $\square \quad ^{100}\text{Mo} \rightarrow \text{enrichment} \sim 95\%$
- □ $Q(^{100}Mo) \sim 3034 \text{ keV} \rightarrow \text{beyond natural } \gamma$ radioactivity
- □ **Particle IDentification** $\rightarrow \alpha$ -induced background reduced by a factor 100
- Other pilot-experiments (CUPID-Mo, CUPID-0)

9

The CUPID experiment

CUPID Baseline Parameters (DOE Portfolio Review)

- $\Box \qquad 45x45x45 \text{ mm}^3 \text{ Li}_2^{100} \text{MoO}_4 \text{ crystals}$
- □ 1596 crystals \rightarrow ~ 240 kg ¹⁰⁰Mo (95% enrichment)
- Crystal resolution ~ 5 keV (FWHM @ ²⁰⁸TI line)
- Crystal light yield ~ 0.3 keV_{light} / MeV_{heat}
- Ge light detectors (LD) with SiO anti-reflective coating (top and bottom of crystals)
- LD resolution: <100 eV RMS, < 80 ms · eV (FWHM)

Background Budget (from data driven background model)

R&Ds

R&D PROGRAM

- 3 different cryogenic facilities \succ operational
 - Test baseline detector performance 0
 - Test alternative technologies 0
 - Background control 0
- Simulations of detector and facility \succ
 - Background budget 0
 - Develop new analyses techniques 0

FIRST VALIDATION OF DETECTOR **BASELINE DESIGN**

- Baseline Design Prototype Tower \succ
 - Validation assembly procedure Ο
 - Studies on LMOs and LDs performance 0
 - Vibrational noise optimizations Ο

14-floors tower tests ongoing

- Run1 \rightarrow Jul-Aug 2022 0
- $Run2 \rightarrow Sep-Oct 2022$ 0
- Run3 \rightarrow foreseen in Sep 2023 Ο

6000

10²

The CUPID ultimate target

CUPID-baseline

- ¹⁰⁰Mo mass: **240 kg**
- Background index: 1 · 10⁻⁴ ckky
- Infrastructure: CUORE cryostat

$$\Box T^{0\nu}_{1/2} > 1.4 \cdot 10^{27} \text{ yr}$$

CUPID-reach

- ¹⁰⁰Mo mass: 240 kg
- Background index: 2 · 10⁻⁵ ckky
- Infrastructure: CUORE cryostat

$$T^{0\nu}_{1/2}$$
 > 2.2 \cdot 10²⁷ yr

CUPID-1T

- ¹⁰⁰Mo mass: **1000 kg**
- Background index: 5 · 10⁻⁶ ckky
- □ Infrastructure: new cryostat
- $\Box T^{0\nu}_{1/2} > 9.1 \cdot 10^{27} \text{ yr}$

The CUPID ultimate target

CUPID-baseline

- ¹⁰⁰Mo mass: **240 kg**
- Background index: 1 · 10⁻⁴ ckky
- Infrastructure: CUORE cryostat
- $\Box T^{0\nu}_{1/2} > 1.4 \cdot 10^{27} \, yr$

CUPID-reach

- ¹⁰⁰Mo mass: 240 kg
- Background index: 2 · 10⁻⁵ ckky
- Infrastructure: CUORE cryostat

$$T^{0\nu}_{1/2}$$
 > 2.2 \cdot 10²⁷ yr

CUPID-1T

- ¹⁰⁰Mo mass: **1000 kg**
- Background index: 5 · 10⁻⁶ ckky
- Infrastructure: new cryostat
 - $T^{0\nu}_{1/2}$ > 9.1 \cdot 10²⁷ yr

The CUPID ultimate target

CUPID-baseline

- ¹⁰⁰Mo mass: **240 kg**
- Background index: **1** · **10**⁻⁴ ckky
- Infrastructure: CUORE cryostat

$$\Box T^{0\nu}_{1/2} > 1.4 \cdot 10^{27} \text{ yr}$$

CUPID-reach

- ¹⁰⁰Mo mass: 240 kg
- Background index: 2 · 10⁻⁵ ckky
- Infrastructure: CUORE cryostat

$$T^{0\nu}_{1/2}$$
 > 2.2 \cdot 10²⁷ yr

CUPID-1T

- ¹⁰⁰Mo mass: **1000 kg**
- Background index: 5 · 10⁻⁶ ckky
- □ Infrastructure: new cryostat

$$T^{0\nu}_{1/2}$$
 > 9.1 \cdot 10²⁷ yr

CUORE

- Demonstrated the feasibility of a tonne-scale experiment operating cryogenic detectors
- □ Collecting data since 2017 (~2.3 ton yr as for now)
- **D** No evidence of $0\nu\beta\beta$ in ¹³⁰Te with 1038.4 kg y exposure:
 - > $T_{1/2}^{0\nu}$ > 2.2 · 10²⁵ yr (90% C.I.)
 - ➤ m_{ββ} < 90-305 meV (90% C.I.)</p>
- **D** Most precise measurement of ¹³⁰Te $2\nu\beta\beta$:

T⁰
$$_{1/2}$$
 = 7.71 $^{+0.08}_{-0.06}$ (stat) $^{+0.12}_{-0.15}$ (syst) × 10²⁰ yr

CUPID

- Experience from previous experiments (CUORE, CUPID-0, CUPID-Mo) and existing infrastructures
- R&D ongoing to define the final design
- The goal is to **explore the full inverted hierarchy** (target sensitivity $> 10^{27}$ yr for ¹⁰⁰Mo)
- CUPID foresees an ultimate stage with 1t of isotope in the CUPID-1T experiment

Thanks for your attention!

