The JUNO experiment: Status and Prospects

Sindhujha Kumaran, University of California Irvine for the JUNO collaboration

Rencontres du Vietnam, 30th anniversary, Aug 6-12, 2023

JUNO experiment overview

- The Jiangmen Underground Neutrino Observatory (JUNO) is located at Jiangmen, Guangdong, China
- 20 kton Liquid Scintillator (LS) detector
- Main goal: study reactor neutrino oscillations at medium baseline
- Wide range of physics prospects
- Small satellite detector TAO near one of the Taishan reactors

The JUNO detector

	Experiment	Daya Bay	Borexino	KamLAND	JUNO
-	LS mass	20 ton	$\sim 300 \text{ ton}$	~ 1 kton	$20 \mathrm{kton}$
	PMT coverage	~12%	$\sim 34\%$	~34%	$\sim 78\%$
	Energy resolution	~8%	$\sim 5\%$	$\sim 6\%$	$\sim \! 3\%$
	Light yield	${\sim}160$ p.e./ MeV	${\sim}500$ p.e./ MeV	${\sim}250$ p.e./MeV	>1345 p.e./ MeV

3

JUNO: physics potential

Reactor antineutrinos

Reactor neutrino oscillations

Survival probability:

$$\begin{aligned} \mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) &= 1 - \sin^2 2\widetilde{\theta}_{12} \, \widetilde{c}_{13}^4 \, \sin^2 \widetilde{\Delta}_{21} - \sin^2 2\widetilde{\theta}_{13} \left(\widetilde{c}_{12}^2 \sin^2 \widetilde{\Delta}_{31} + \widetilde{s}_{12}^2 \sin^2 \widetilde{\Delta}_{32} \right) \\ &= 1 - \sin^2 2\widetilde{\theta}_{12} \widetilde{c}_{13}^4 \sin^2 \widetilde{\Delta}_{21} - \frac{1}{2} \sin^2 2\widetilde{\theta}_{13} \left(\sin^2 \widetilde{\Delta}_{31} + \sin^2 \widetilde{\Delta}_{32} \right) \\ &- \frac{1}{2} \cos 2\widetilde{\theta}_{12} \sin^2 2\widetilde{\theta}_{13} \sin \widetilde{\Delta}_{21} \sin(\widetilde{\Delta}_{31} + \widetilde{\Delta}_{32}), \end{aligned}$$

- JUNO has the potential to determine neutrino mass ordering as well as to measure Δm_{21}^2 , Δm_{31}^2 , and $\sin^2\theta_{12}$ at < 1% precision level
- Requirements:
 - Large statistics
 - · Excellent energy resolution (3% at 1 MeV)
 - \cdot $\,$ Good knowledge of reactor antineutrino spectral shape
 - · Low background (rock overburden ~650 m, efficient muon veto >99.5%)

P ⊌⊸ve

Credits: B. Rosk

6

JUNO-TAO detector

- Provide a reference spectrum for JUNO, eliminating the possible model dependence due to fine structure in the reactor antineutrino spectrum in determining the neutrino mass ordering
- ~40 m from one of Taishan's 4.6 $GW_{\rm th}$ reactor core
- 1 ton fiducial volume with Gd-LS
- 10 m² SiPM of 50% photon detection efficiency operated at $-50^{\circ}C$
- $\geq 94\%$ photo-coverage
- 30× JUNO event rate

arXiv:2005.08745

Neutrino mass ordering

Paper under preparation

• Fit the spectrum under the normal and inverted ordering hypotheses

$$\Delta \chi^2_{\min} = |\Delta \chi^2_{\min} (\text{NO}) - \Delta \chi^2_{\min} (\text{IO})|$$

 3σ (reactors only) with ~6 yrs × 26.6 GW_{th} exposure

Precision measurement of oscillation parameters

Abusleme et al 2022 Chinese Phys. C 46 123001

- Potential to measure Δm_{21}^2 , Δm_{31}^2 , and $\sin^2 \theta_{12}$ with roughly one order of magnitude better precision than current values, even with 100 days of data!
- Measurement of Δm_{21}^2 and $\sin^2\theta_{12}$ can also be done with ⁸B solar neutrinos (next slide)

	$\Delta { m m}^2_{21}$	$\Delta { m m}^2_{31}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$
PDG 2020	2.4%	1.3%	4.2%	3.2%
JUNO 100 days	1.0%	0.8%	1.9%	47.9%
JUNO 6 years	0.3%	0.2%	0.5%	12.1%

Solar neutrinos

- Simultaneous measurement of 8B solar neutrinos, $\Delta m^2{}_{21},$ and $sin^2\theta_{12}$
- ⁸B flux can be measured with ~5% precision using ES+NC+CC channels in 10 years. $\sin^2\theta_{12}: 8\%, \ \Delta m^2_{21}: 20\%$

• ⁷Be and *pep* neutrino flux uncertainties will significantl be improved w.r.t. current precision levels after a few years of data taking for all background scenarios, provided that the systematic error will be kept under control (⁷Be ≤ 1 year, *pep* ≤ 6 years)

• CNO neutrino flux precision will exceed current precision levels with a pep- ν constraint for all background levels, except for the worst background scenario

Geoneutrinos

$${}^{238}\text{U} \rightarrow {}^{206}\text{Pb} + 8\alpha + 8e^- + 6\bar{\nu}_e + 51.7 \text{ MeV}$$

$${}^{235}\text{U} \rightarrow {}^{207}\text{Pb} + 7\alpha + 4e^- + 4\bar{\nu}_e + 46.4 \text{ MeV}$$

$${}^{232}\text{Th} \rightarrow {}^{208}\text{Pb} + 6\alpha + 4e^- + 4\bar{\nu}_e + 42.7 \text{ MeV}$$

$${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + e^- + \bar{\nu}_e + 1.31 \text{ MeV} (89.3\%)$$

$${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar} + \nu_e + 1.505 \text{ MeV} (10.7\%)$$

- Geoneutrinos help study the abundance of radioactive elements inside the crust and mantle, as well as the amount of heat emitted from them
- High statistics: more events in one year (~400) than global geoneutrino sample accumulated to date
- JUNO also has the potential for the discovery of mantle geoneutrinos
- Updated sensitivity results since 2016 (Ran Han et al. 2016 Chinese Phys. C 40 033003). Paper under preparation.

Experiment	Borexino	KamLAND	JUNO	JUNO
(years)	(8.9 years)	(14.3 years)	(6 years)	(10 years)
$^{238}\text{U} + ^{232}\text{Th}$ (fixed Th/U)	~17%	~15%	~10%* PRELIN	~8%* (INARY

*Reported for the first time at the MMTE workshop, 2023, Paris, France https://indico.in2p3.fr/event/30001/contributions/126865/

Atmospheric neutrinos

- ~0.7-1.4 σ (atmospheric only) with ~6 yrs exposure
- Complementary to reactor neutrino NMO analysis using matter effects from atmospheric neutrinos crossing the Earth

Supernova neutrinos

- Diffuse Supernova Neutrino Background: flux of neutrinos reaching the Earth from all the core-collapse supernovae in the universe
- Potential to observe DSNB with $\sim 3\sigma$ significance in ~ 3 years assuming a nominal reference model

- Core-collapse SN in our vicinity:
 - Large SN neutrino sample with high energy resolution and low threshold (~ 0.02 MeV with multi-messenger trigger)
 - Capability to detect pre-SN neutrinos from close SN-candidates

JUNO installation status

Construction of stainless steel structure completed

Acrylic vessel in the center detector: installation in progress \rightarrow upper half-hemisphere completed

PMT, electronics, muon veto system installation ongoing

JUNO installation status

Installation of purification plants for the LS completed

Ultra-pure water almost ready for water phase

17

- JUNO is a 20 kton liquid scintillator detector under construction in Jiangmen, China and it is designed to study reactor neutrino oscillations
- Main goals:
 - · Determination of Neutrino Mass Ordering (NMO): ~3 σ in ~6 years
 - Precision measurement of oscillation parameters Δm_{21}^2 , Δm_{31}^2 , and $\sin^2\theta_{12}$ (can exceed current precision levels in ~100 days)
- In addition:
 - Solar neutrinos: JUNO can provide competitive results on ⁷Be *pep*, CNO, and ⁸B solar neutrinos. ⁸B solar neutrino measurement includes simultaneous measurement of Δm_{21}^2 and $\sin^2\theta_{12}$
 - \cdot Geoneutrinos: JUNO will also observe a large number of geoneutrinos (~400/ year) and will reach current precision levels within few years of data taking. It also has potential to observe mantle signal
 - Atmospheric neutrinos: Study of matter-induced atmospheric neutrino oscillations can act complementary to reactor NMO analysis
 - · Supernova neutrinos: Potential to observe huge amount of neutrinos from nearby supernovae. A large DSNB flux expected: $\sim 3\sigma$ observation in ~ 3 years assuming a nominal reference model
- Detector installation on track in spite of pandemic-related delays

June 24th, 2023, Kaiping, China