30th Anniversary of the Rencontres du Vietnam

WINDOWS ON THE UNIVERSE

First results from FASER at LHC

Ke Li on behalf of FASER Collaboration

30th Anniversary of Rencontres du Vietnam

08/08/2023

First results from FASER

Vietnam2023

08/08/2023

WASHINGTON

UNIVERSITY of

Overview

Motivation of FASER experiment

- Search for and study of long lived particles (LLPs) and neutrinos
- More fully realize the discovery potential of the LHC
- Design, construction, commissioning, and data-taking
 - ~ 5 years from conception to physics results
- First physics results
 - Search for dark photon [CERN-FASER-CONF-2023-001]
 - First direct detection of collider neutrinos [PhysRevLett.131.031801(2023)]
- Beyond Run3

0

FASER2, FASERv2, and the Forward Physics Facility (FPF)

ForwArd Search ExpeRiment (FASER) at the LHC

- FASER is designed to search for LLPs and neutrinos produced in pp collisions at the ATLAS IP
- Light LLPs are produced in the decay of SM mesons, which are predominantly produced very collimated in the beam direction
- Even small detectors on (or close to) the **LOS** can have good sensitivity in these scenarios
 - N~ 10¹⁶ pions/10¹² neutrinos in LHC Run 3 (2022-2025)
 - E~ TeV, $\theta_{\text{beam axis}}$ ~ mrad
 - e.g. 1% of pions with E > 10 GeV are produced in the forward 0.000001% of the solid angle ($\eta > 9.2$)
 - Even with 1 fb⁻¹ of data FASER will have sensitivity to unconstrained parameter space
- Unique opportunities to search for long-lived particles and measure very high energy neutrino interactions

• Almost background free

FASER detector

FASER operation

- Successfully constructed, installed and commissioned
- Smoothly operated throughout 2022
 - Continuous data taking
 - Largely automated
 - $\circ \qquad \text{Up to 1.3 kHz}$
- Recorded 96.1% of delivered luminosity
 - DAQ dead-time of 1.3%
 - A couple of DAQ crashes
- Emulsion detector exchanged twice
 - Needed to manage the occupancy
 - First box only partially filled
- Calorimeter gain optimised for:
 - Low E (<300 GeV) before 2nd exchange
 - High E (up to 3 TeV) after the exchange
- Smoothly operating at 2023
 - Another ~30 fb⁻¹ data

Detector performance from data

Search for dark photon

Background estimation

- Main background is from neutrino interactions
 - Primarily coming from vicinity of timing detector
 - Estimated from GENIE simulation equivalent of 300 ab⁻¹ data
 - Uncertainties from neutrino flux and mismodeling
 - Predicted events with E(calo) > 500 GeV:

 $N = (1.8 \pm 2.4) \times 10^{-3}$

- Neutral hadrons (K_s) from upstream muons interacting in rock in front of FASER
 - Heavily suppressed
 - High energy muon nearly always continues after interaction
 - Has to pass through 8 interactions length (FASERv)
 - Decay products have to leave E(calo) > 500 GeV
 - Data-driven estimation from lower energy events with 2 or 3 tracks and different veto conditions

- Other background
 - Veto inefficiency
 - Measured layer-by-layer via muons with tracks pointing back to vetos
 - Layer efficiency > 99.999%
 - Non-collision backgrounds
 - Cosmics measured in runs with no beam
 - Near-by beam background measurement in non-colliding bunches
 - Negligible
- Total background prediction:

N = $(2.02 \pm 2.4) \times 10^{-3}$

Observed yields

- No events in unblinded signal region
- Not even any with ≥ 1 fiducial track

Observed limits

- No event in SR is observed
- FASER sets limits in previously unexplored parameter space !
 - Probes new territory in the interesting thermal-relic region
- Updating the study with improvements from reconstruction
 - A better track finding algorithm and detector alignment
 - Results will be released soon.

/µ going through FASER/ 25cm×25cm area, L=150fb^{−1}

Charm Decay Bottom Decay

Pion Decay Kaon Decay Hyperon Decay

10¹

10¹²

10¹

10¹

10

10

First direct observation of collider neutrinos

- A huge number of neutrinos produced in the LHC collisions traverse the FASER • location covering an unexplored neutrino energy regime
 - Originate from hadron decays, mainly pion, kaon and charm mesons
- Expected to record several 1000 of neutrino interactions in Run3
- \circ ~1000 ν_e, ~1000 ν_μ, ~50 ν_τ For first study, we use silicon tracker to detect neutrino interaction at FASERν •
 - Focusing on $\pmb{v_u}$ CC interactions Ο

but signal (>40pC) in other 3 vetos

First results from FASER

- p >100 GeV, θ<25 mrad, r<95mm
- Extrapolated to r<95 mm at veto scintillators

Background estimation

- Neutral hadrons from muon interaction in front of FASER
 - \circ Simulate 2.1×10⁹ μ events based on the FLUKA energy spectrum
 - Expect ~300 neutral hadrons with E>100GeV reaching FASER
 - Propagate through the last 8m of rock

 $N = (0.11 \pm 0.06)$

- Geometric background from muon scattering
 - Estimated from a geometric sideband
 - Uncertainty is estimated from varying selections

N = (0.08 ± 1.83)

- Veto inefficiency
 - Estimate from fitting with 0/1/2 veto fired layers
 - Negligible due to high veto efficiency

08/08/2023

Vietnam2023

12

First direct observation of collider neutrinos

- Observed **153 events** with 0.2 background
 - \circ Consistent with prediction: 151 ± 41
- Significance of **16**

$$n_{\nu} = 153^{+12}_{-13}(\text{stat})^{+2}_{-2}(\text{bkg}) = 153^{+12}_{-13}(\text{tot})$$

SND@LHC observed ~8 events with a significance of 6.8 σ , more details in Cristovao's talk at Thursday

Neutrino characteristic

- Candidate neutrino events match expectation of signal
 - Most events have high momentum muon
 - More v_{μ} than anti- v_{μ}
- Opening a new window for neutrino study
- More studies are on-going
 - e.g. measurements using FASERv detector

Note: no acceptance corrections nor systematic uncertainties here

Vietnam2023

FASER2, FASERv2, and Forward Physics Facility (FPF)

- FASER2 for HL-LHC
 - Radius increased to 1m (FASER is 10cm)
 - Acceptance (π^0) increased to 10% (FASER is 0.6%)
 - Sensitivity improved by four orders of magnitude in many models
- FASERv2
 - o 40cm×40cm×8m, 20 tons
 - $O(10^5)v_e$, $O(10^6)v_\mu$, $O(10^4)v_\tau$ expected in O(10) ton detector
- The FPF is proposal to create a new facility to house a suite of experiments on LOS
 - FASER2
 - FASERnu2
 - AdvSND
 - FLArE
 - FORMOSA
- More details in <u>6th FPF workshop</u>

Summary and prospects

- FASER successfully constructed and took data of Run 3
 - Detector operated well and collected ~40 fb⁻¹ of data in 2022 and ~30 fb⁻¹ in 2023
- Excluded A' in region of low mass and kinetic mixing
 - Probes new territory in the interesting thermal-relic region
- Observed ~153 v_{μ} CC interactions
 - First direct detection of collider neutrinos!
 - Opens new window for high-energy *v* studies
- More studies are in progress
 - e.g. ALPs, neutrino cross sections, new A' search
 - New ideas are welcome
- Strong physics case emerging for large upgraded FASER2 and FASERv2 detectors beyond Run 3, to be housed in the proposed <u>Forward Physics Facility (FPF)</u>

Acknowledgement

SIMONS

1955 Natio

CERI

We also thank

- The LHC for excellent performance in 2022
- ATLAS for luminosity information
- ATLAS for use of ATHENA s/w framework
- ATLAS SCT for spare tracker modules
- LHCb for spare ECLA modules
- CERN FLUKA team for bkgrd simulations
- CERN PBC and technical infrastructure groups for excellent support during FASER's design, construction, installation

First results from FASER

