Search for CP violation in Higgs boson interactions at the ATLAS experiment

Inês Ochoa on behalf of the ATLAS Collaboration

Windows on the Universe - 30th Anniversary Rencontres du Vietnam 7-12 Aug 2023

Searching for CP violation in Higgs boson interactions

Why?

- Sakharov conditions for a matter-dominated Universe require CP violation.
 - Known SM sources are insufficient to explain the observed asymmetry.
- CP violation in the Higgs sector is an enticing possibility:
 - The Higgs boson is a CP eigenstate with J^{CP}=0⁺ in the Standard Model.
 - A pure J^{CP}=0⁻ boson was ruled out in Run 1.
 - But a CP-odd admixture is far from being ruled out!
- Several BSM models predict CP violation in the Higgs sector (e.g. 2HDM).

Searching for CP violation in Higgs boson interactions

How?

Bosonic couplings:

- CP-odd contributions may enter only at higher orders terms and be suppressed by powers of $1/\Lambda.$
- This could be why it hasn't been observed so far.

Fermionic couplings:

- More democratic test of CP nature since CP even and CP odd components can have same magnitude.
- Mixing angle α between CP-even and CP-odd components, which can occur at tree-level.

$$\mathscr{L}_{VVH} = \mathscr{L}_{VVH,SM} + \frac{1}{\Lambda^2} c \phi \tilde{V}_{\mu\nu} V^{\mu\nu} + \dots$$

 $\Lambda \equiv$ scale of new physics $c \equiv$ Wilson coefficient

 $\mathscr{L}_{ffH} = \kappa'_f y_f \phi \bar{\psi}_f (\cos \alpha + i \gamma_5 \sin \alpha) \psi_f$

ATLAS Run 2 data

Bosonic Couplings

H→**ZZ***→**4***ℓ*: 2304.09612 (submitted to JHEP)

VBF H \rightarrow **YY:** 2208.02338 (submitted to PRL)

Searching for CP-odd effects in production and decay via Optimal Observables:

q

- ✓ Warsaw basis
- ✓ Higgs basis
- \checkmark \tilde{d} in HISZ basis

H→ZZ*→4ℓ

- Production-level fit uses VBF enriched signal-regions.
- Decay-level fit is dominated by ggF signal events.
- Mass sidebands for constraining ZZ* normalisation.
- Measurement insensitive to CP-even signatures of BSM physics.

candidates at positive

 $OO^{c_{zz}}$

H→ZZ*→4ℓ

- Slight preference for a non-zero BSM coupling in production-level analysis:
 - Compatible with SM at 2σ and not confirmed by decay analysis.
- Precision limited by statistical uncertainty of the data.
 - Production-level fits impacted by systematic uncertainties that lead to event migration.

VBF H→**∛**∛

- Once again, CP-odd component can be described using effective field theory and adding a dimension-6 operator to the SM Lagrangian.
 - Optimal Observables employed to study CP structure in the VBF production.

✓ $c_{H\tilde{W}}$ in Warsaw basis
✓ $\tilde{d} = \tilde{d}_B$ in HISZ basis

BDTs trained to increase VBF signal purity against ggF and continuum background ($\gamma\gamma, \gamma j, jj$), using features insensitive to CP properties of VBF VBF H→**∛**∛

00

Fermionic Couplings

 $H \rightarrow \tau^+ \tau^-$: Eur. Phys. J. C 83 (2023) 563 $tH, t\bar{t}H$ with $H \rightarrow b\bar{b}$: 2303.05974 (submitted to PLB)

- Study of CP properties of the interaction between the Higgs boson and *τ*-leptons via angular observables defined by visible decay products of the *τ*.
- Effective interaction parameterised as:

$$\mathscr{L}_{H\tau\tau} = -\frac{m_{\tau}}{\nu} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H$$

 $\kappa_{ au}$: reduced Yukawa coupling strength $\phi_{ au}$: CP-mixing angle SM: $\phi_{ au} = 0^{\circ}$

- Study of CP properties of the interaction between the Higgs boson and *τ*-leptons via angular observables defined by visible decay products of the *τ*.
- Effective interaction parameterised as:

$$\mathscr{L}_{H\tau\tau} = -\frac{m_{\tau}}{\nu}\kappa_{\tau}(\cos\phi_{\tau}\bar{\tau}\tau + \sin\phi_{\tau}\bar{\tau}i\gamma_{5}\tau)H$$

 $\kappa_{ au}$: reduced Yukawa coupling strength $\phi_{ au}$: CP-mixing angle SM: $\phi_{ au} = 0^{\circ}$

- Production channels: vector-boson-fusion (VBF) and boosted gluon-gluon fusion (ggF).
- Decay channels: $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$. τ_{had} decay mode classification via BDT using number of tracks,

single- π_0 and multi- π_0 clusters.

Fit performed to φ_{CP}^* distribution. **Z+jets normalisation** extracted from data CR.

• Observed (expected) value of ϕ_{τ} is $9^{\circ} \pm 16^{\circ}(0^{\circ} \pm 28^{\circ})$ at 68% CL and $\pm 34^{\circ}(^{+75^{\circ}}_{-70^{\circ}})$ at 95% CL.

- Data disfavours pure CP-odd hypothesis at 3.4σ level.
- Results compatible with SM expectation.
- Total uncertainty dominated by statistical uncertainties.
 - Dominant systematics from jet energy scale and resolution.

$tH, t\bar{t}H$ with $H \rightarrow b\bar{b}$

- Studying the CP properties of the top-Yukawa coupling for the first time in this final state.
- BSM top-Higgs interactions parameterised as:

Analysis strategy:

- Target high jet multiplicities, including b-quarks.
- Exploit collimated decay topology of the Higgs boson using reclustered jets.
- BDTs/DNN for Higgs and top reconstruction and for signal classification.
- Dedicated CP-sensitive observables are used in the fit to the resolved signal regions:

Dilepton channel

$$b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1||\vec{p}_2|} \qquad b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$$

l+jets channel

17

$tH, t\bar{t}H$ with $H \rightarrow b\bar{b}$

• Simultaneous binned profile likelihood fit performed to all analysis regions.

$tH, t\bar{t}H$ with $H \rightarrow b\bar{b}$

• Best-fit values in agreement with SM expectation:

$$\alpha = 11^{\circ+56^{\circ}}_{-77^{\circ}}$$
$$\kappa'_t = 0.84^{+0.30}_{-0.46}$$

- Uncertainties in measured values dominated by $t\bar{t} + \ge 1b$ modelling uncertainties:
 - NLO matching procedure, parton shower and hadronisation models, flavour scheme.
- This is the first probe of the CP properties in top-quark's Yukawa coupling to the Higgs boson in tH, $t\bar{t}H$ with $H \rightarrow b\bar{b}$.
 - A better theoretical understanding of this background (along with additional LHC data) will greatly benefit future measurements.

Summary

- All measurements consistent with the SM expectation of a CP-even Higgs boson.
- We continue to develop new analysis ideas and methods to **fully explore the Run 2 data**, as we prepare to analyse the **Run 3 data at** √s=13.6 TeV.

