Searches for Electroweak Production of Supersymmetric Particles with the ATLAS Detector

Stefano Passaggio (INFN Genova)

on behalf of the ATLAS Collaboration

Rencontres du Vietnam 2023 – 30th Anniversary – Windows on the Universe

Quite a view, from this Window on the Universe!

Stefano Passaggio (INFN Genova)

on behalf of the ATLAS Collaboration

Rencontres du Vietnam 2023 – 30th Anniversary – Windows on the Universe

Outline

- Introduction
 - Why SUSY?
 - EW SUSY challenge
- Focus on recent ATLAS EW-SUSY search results, based on the full Run 2 statistics
 - Direct production of winos and higgsinos pairs
 - Final state: Multilepton (2L SS / 3L) + jets
 - Direct production of staus or charginos and neutralinos pairs
 - Final state: 2τ (hadronically decaying)
 - Pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W-boson mass
 - Final state: 2L0J
- Summary and perspectives

Introduction

- BSM: why SUSY?
 - Theoretically compelling
 - Unique non-trivial extension of Poincaré algebra
 - Unites particles of integer and half-integer spin in common symmetry multiplets
 - Relates bosons and fermions
 - If realized at weak scale, might naturally mitigate the hierarchy problems of the SM
 - Allows unification of the gauge couplings at GUT scale and a natural incorporation of gravity
 - If endowed with R-parity conservation, presents a natural cold dark matter candidate (LSP)
- Must be (spontaneously) broken
- LHC Run 2 is over (L ~ 140 fb⁻¹), Run3 ongoing
 - Searches are actively in progress
- In this talk: recent EW-SUSY results based on L_{Full Run 2} 8/8/2023 Rencontres du Vietnam 2023

"Conventional" SUSY Searches

- R-parity conserving SUSY
- Search for signal pairs in decay final states
- Characterized by large E_T^{miss} from undetected LSP and hard objects (jets, leptons, tracks)
- Ad-hoc kinematic variables for SM bkg suppression in presence of several massive undetected objects in the final state; based on kinematics/topology in transverse plane
 - Stransverse Mass M_{T2}

$$M_{T2}^{2} \equiv \min_{\mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{p}_{T}} \left[\max\left\{ m_{T}^{2}(\mathbf{p}_{Tl^{-}},\mathbf{p}_{1}), m_{T}^{2}(\mathbf{p}_{Tl^{+}},\mathbf{p}_{2}) \right\} \right]$$

• Effective Mass

$$m_{\text{eff}} = \sum_{i \le N_{\text{jets}}} (p_{\text{T}}^{\text{jet}})_i + E_{\text{T}}^{\text{miss}}$$

Ewkinos: two same-sign or three leptons

SS/3L: arXiv-2305.09322

- wino-like NLSP $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ pairs decaying to on-shell Wh/WZ bosons and bino-like LSP $\tilde{\chi}_1^0$
- $W^\pm \to l^\pm \nu_l$, $Z \to l^+ l^-$
- In the Wh channel, all possible h decays that result in 1L final state are considered
- RPV scenarios
 - Production of light higgsino-like $(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0, \tilde{\chi}_2^0)$ pairs, with:
 - Bilinear (ϵ) RPV decays (inclusive): LNV
 - motivated by connection with neutrino physics (see-saw)
 - UDD trilinear (λ'_{323}) RPV decays: **BNV**
 - BNV featured in GUTs and models with black holes
 - necessary to describe the observed baryon asymmetry
 - Inclusive; dominant prods: $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$, $\tilde{\chi}_1^0 \tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$

 $2L-SS: \ge 4$ jets

3L: Z veto

Ewkinos: two same-sign or three leptons ATLAS WZ √s= 13 TeV. 139 fb

- Signature
 - **<u>Trigger</u>**: 2 leptons ($p_T^{Thr} \sim 20$ GeV) OR E_T^{miss} (> 250 GeV)
 - 2L SS (3L SR for bRPV model), \geq 1 jet
- Optimized Signal Regions

 $e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$ Low and high m_{T2} (E_T^{miss} binned) scenarios Using m_{ii} , m_{T2} , E_T^{miss} , E_T^{miss} significance, m_T^{min}

Low and high m_{T2} (E_T^{miss} significance binned) scenarios Using m_{T2} , m_T^{min} , E_T^{miss} , m_{eff} , E_T^{miss} significance, ΔR_{ll} , Spread(ϕ)

10 SN Data 150 200 250 100 300 50 Wh 20 GeV ATLAS √s = 13 TeV. 139 10^{4} SR^{bRPV} Events / 10³ > 60 GeV 10²

10

bRPV ≥ 10 ഗ 1.5 High $m_{
m T2}$, $E_{
m T}^{
m miss}$ Data / 20 40 60 m_{T2} [GeV]

► SR^{Wh}hiah-m -3

350

[GeV]

E^{miss}

Ewkinos: two same-sign or three leptons

SS/3L: arXiv-2305.09322

 <u>Irreducible bkgs</u>: WZ, W⁺W⁻; normalised to data in dedicated CRs Other rare SM processes: MC simulation

SUSY

- <u>Reducible bkgs</u>: fake/non-prompt lepton, charge flip (in electron case) typically dominant; measured by data-driven techniques
- No significant excess observed in any of the optimized SRs, for all targeted signals

Ewkinos: two same-sign or three leptons

SUSY

Ewkinos via Wh decay

• Event selection

Direct stau

• Models

•

٠

• BDTs to enhance sensitivity in "direct stau" search

EWkinos (C1N2, C1C1) via intermediate stau decay

• In "intermediate stau decay": treat separately SS/OS-lepton, low (LM) and high mass (HM)

di-tau: ATLAS-CONF-2023-029

- Background estimation
 - Multi-jet background contributes to fake τ -leptons: data-driven approach
 - W/Z + jets, top: MC normalised to data in dedicated CRs
 - For Intermediate Wh channel, W/Z + jets bkg is estimated by data-driven technique

EWKinos and staus: two hadronic taus

• Multi-boson: dominant bkg in "Wh decay" channel, MC-estimated and checked in VRs

SM Total Multi-boson

Higgs

Data

Mis-ID τ

Top quark Z+jets

- \cdot m($\tilde{\chi}_{\star}^{\pm}/\tilde{\chi}_{o}^{0}, \tilde{\chi}_{\star}^{0}$) = (225, 75) GeV

EWKinos and staus: two hadronic taus

• Data / SM expectation agreement within uncertainties Number Number in all SRs

SUSY

Number of events 10^{4} 10^{4}

10²

10

 σ_{tot}

- n_{pred}) / .

(n obs

• In "direct stau" channel, all BDT-SRs strongly overlap and show a common deficit (significance 0.7-1.3)

event

 10^{3}

ATLAS Preliminary

√s = 13 TeV, 139 fb⁻¹

Intermediate Wh channel

EWKinos and staus: two hadronic taus

- $\tilde{\tau}$ masses up to 480 GeV are excluded for mass-degenerate $\tilde{\tau}_{L,R}$ scenarios and $\bar{\tau}_{R}$ up to 410 GeV for $\tilde{\tau}_{L}$ -only scenarios
- The first sensitivity to $\tilde{\tau}_R$ -only scenarios is presented, with $m(\tilde{\tau}_R)$ excluded up to 330 GeV
- Gauginos masses up to 1.16 TeV are excluded for a massless LSP in "intermediate stau" search
 - Improvements coming from recurrent neural network on τ identification
- Gauginos masses smaller than 330 GeV are excluded for a massless LSP for the "intermediate Wh" model

EWKinos and sleptons: two electrons or muons

2L0J: JHEP 06 (2023) 031

- Search for sleptons and charginos direct production with 2 OS leptons and $E_{\rm T}^{\rm miss}$
 - EW-scale SUSY with light smuons ($\tilde{\mu}$) and a light LSP ($\tilde{\chi}_1^0$) can explain the $(g-2)_{\mu}$ anomaly with additional loop corrections
 - For small $\tan \beta$, the $(g 2)_{\mu}$ anomaly favours the 'moderately compressed' or 'compressed' regions where $m(\tilde{\mu}) m(\tilde{\chi}_1^0)$ is close to or smaller than W-boson mass
- Event selection
 - Separate same-flavour (SF) and different-flavour (DF) leptons in the final states
 - Slepton scenario: SRs binned in $m_{
 m T2}$ with SF leptons selections
 - Chargino scenario: SRs defined in bins of BDT output for both DF and SF events
- Background estimation
 - Data driven technique used to estimate flavour symmetric backgrounds (FSB) in slepton scenario
 - Dedicated CRs defined for top and diboson (VV) processes in chargino model

EWKinos and sleptons: two electrons or muons

2L0J: JHEP 06 (2023) 031

- Data are consistent with the SM predictions
 - 3.5 σ local data deficit in slepton SR is strictly correlated with statistical fluctuations
 - Extend the limits in low to moderate mass difference region between slepton or chargino and neutralino

EWkinos

- EWK SUSY searches are experimentally challenging
- No significant excess observed on top of SM predictions, stringent exclusion limits placed on the parameter space for sleptons and gauginos
 - First limits set on $m(ilde{ au}_R)$ at the LHC!
 - O(100) GeV O(1) TeV slepton is still highly motivated
 - Chargino/neutralino mass excluded up to ~ 1TeV
- Looking forward to Run 3 results: Stay tuned!

