

Experimental Program for Super Tau-Charm Facility

Xiaorong Zhou

University of Science and technology of China

Windows on the Universe – 30th Anniversary of the Rencontres du Vietnam 8.6-8.13, 2023, Quy Nhon

Super tau-charm facility in China

- Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity & realize beam polarization
- Total cost: 4.5B RMB

- 1 ab⁻¹ data expected per year
- Rich of physics program, unique for physics with c quark and τ leptons,
- Important playground for study of QCD, exotic hadrons, flavor physics and search for new physics.

Expected data samples at STCF

- STCF is expected to have higher detection efficiency and low bkg. for productions at threshold
- STCF has excellent resolution, kinematic constraining
- Opportunities at 5-7 GeV which is experimentally blank before

Physics program of STCF

Hadron structure and hadron spectroscopy

Fragmentation functions

World data: Pion

World data: Kaon

Fragmentation function $D_q^h(z)$: probability that hadron *h* is found in the debris of a hadron carrying a fraction $z=2E_h/\sqrt{s}$ of parton's momentum.

Collins fragmentation function

Collins FF

 \rightarrow describes the fragmentation of a transversely polarized quark into a spin-less hadron *h*.

 \rightarrow leads to an azimuthal modulation of hadrons around the quark momentum, that can be extract by the double ratio

Significant Collins asymmetries are observed rise with fractional energies and $\ensuremath{p_t}$

The result will provide precision Collins FF input for TMD extraction by EicC (a precision of 2% is required).

Journal of UCAS 38 (2021) 433

Hadrons Spectrum

- Experiments at particle accelerators in last fifties and sixties created more than 100 hadrons → "hadronic zoo"
- Quark model established order in the hadronic zoo

M. Gell-Mann, A schematic model of baryons and mesons: Phys.Lett. 8 (1964) 214-215

"Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc".

G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. CERN-TH-401

"In general, we would expect that baryons are built not only from the product of these aces, *AAA*, but also from $\bar{A}AAAA$, $\bar{A}\bar{A}AAAAA$, etc., where \bar{A} denotes an anti-ace. Similarly, mesons could be formed from $\bar{A}A$, $\bar{A}\bar{A}AA$, etc.".

- Suggested by self-coupling of gluons of QCD, glueballs and hybrids exist.
- Experimental searches for exotic hadrons have a long history
- Recent high-quality data samples from several experiments allow us study the properties of established mesons, and search for new states.

Glueballs and hybrids

States in $\eta' \pi^+ \pi^-$ lineshape

Heavy "nonstandard" hadron candidates

- Large amount of experimental activity on the "nonstandard" heavy sector •
 - $\succ e^+e^-$ direct production: BESIII, Belle, BaBar
 - $pp/p\bar{p}$ promote production: LHCb, CMS, ALTAS...
 - Quarkonia decay: BESIII, Belle, BaBar \succ

However, their properties are still poorly known.

2021-

2019-

P_c(4457)

X(4685)

X(4630)

Charmonium (Like) states at STCF

■ Belle II : ISR approach; B meson decay ($m_R < 4.8 \text{ GeV}$)

LHCb: B/Λ_b decay; Prompt production

STCF: Scan with 10 MeV/step, every point has 10 fb⁻¹/year, 3 ab⁻¹ in 4-7 GeV

arXiv: 2203.07141

Flavor physics and CPV study

Charm physics

≻LHCb: huge x-sec, boost, 9 fb⁻¹ now (×40 current B factories)

► B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency

 \succ τ -charm factory : Low backgrounds and high efficiency, Quantum correlations and CP-tagging are unique

 \succ STCF :

- 4×10^9 pairs of $D^{\pm,0}$ and $10^8 D_s$ pairs per year
 - 10¹⁰ charm from Belle II/year
- Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D , f_{Ds} , CKM matrix...)
 - *D* decay strong phase (Determination of $\gamma/\phi 3$ angle)
 - $D^0 \overline{D}^0$ mixing, CPV
 - Rare decay (FCNC, LFV, LNV....)
 - Excite charm meson states D_J , D_{sJ} (mass, width, J^{PC} , decay modes)
 - Charmed baryons (JPC, Decay modes, absolute BF)

	STCF	Belle II	LHCb
Production yields	**	****	****
Background level	****	***	**
Systematic error	****	***	**
Completeness	****	***	*
(Semi)-Leptonic mode	****	****	**
Neutron/K _L mode	****	★★★☆☆	☆
Photon-involved	****	****	★☆☆
Absolute measurement	****	***	☆

Precision measurements of CKM elements

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud}V_{us}V_{ub}\\ V_{cd}V_{cs}V_{cb}\\ V_{td}V_{ts}V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Leptonic and semileptonic decays of charmed hadrons (D⁰, D⁺, Ds⁺, Λ_c^+) provide ideal testbeds to explore weak $D^+_{(s)}$ and strong interactions

- 1. $|V_{cs(d)|}$ better test on CKM matrix unitarity
- 2. (Semi-)leptonic D(s) decays allow for LFU tests
- 3. $f_{D(s)}^{+}, f^{+K(\pi)}(0)$: test of LQCD

Purely Leptonic:

Semi-Leptonic:

Prospect of charm leptonic decay at STCF

	BESIII	STCF	Belle II	
Luminosity	2.93 fb^{-1} at 3.773 GeV	1 ab ⁻¹ at 3.773 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat} 1.6% _{syst}	0.28% _{stat}	2.8% _{stat}	
$f_{D^+}^{\mu}$ (MeV)	$2.6\%_{\text{stat}}$ $0.9\%_{\text{syst}}$	0.15% _{stat}	Theory : 0.2%	(0.1% expected)
$ V_{cd} $	$2.6\%_{stat} 1.0\%_{syst}^{*}$	$0.15\%_{stat}$	_	
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	$20\%_{\text{stat}}$ $10\%_{\text{syst}}$	0.41% _{stat}	_	
$\frac{\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D^+ \to \mu^+ \nu_{\mu})}$	21%stat 13%syst	$0.50\%_{stat}$	-	
Luminosity	6.3 fb ⁻¹ at (4.178, 4.226) GeV	1 ab ⁻¹ at 4.009 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.4%stat 3.0%syst	0.30%stat	0.8%stat 1.8%syst	
$f^{\mu}_{D^+_s}$ (MeV)	1.2%stat 1.5%syst	$0.15\%_{stat}$	Theor $\overline{v}: 0.2\%$	(0.1% expected)
$ V_{cs} $	$1.2\%_{stat}$ $1.5\%_{syst}$	0.15% _{stat}		
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$1.7\%_{\rm stat} 2.1\%_{\rm syst}$	0.24%stat	$0.6\%_{stat} 2.7\%_{syst}$	
$f_{D_s^+}^{\tau}$ (MeV)	$0.8\%_{stat}$ $1.1\%_{syst}$	0.11% _{stat}	_	
$ V_{cs} $	0.8%stat 1.1%syst	0.11% _{stat}	Theory : 0.2%	(0.1% expected)
$\overline{f}_{D_s^+}^{\mu\& au}$ (MeV)	0.7%stat 0.9%syst	0.09%stat	0.3% _{stat} 1.0% _{syst}	· · · · · ·
$ \overline{V}_{cs}^{\mu\& au} $	$0.7\%_{stat}$ $0.9\%_{syst}$	$0.09\%_{stat}$	_	
$f_{D_s^+}/f_{D^+}$	$1.4\%_{stat} 1.7\%_{syst}$	0.21%stat	_	
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau)}{\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)}$	2.9%stat 3.5%syst	$0.38\%_{stat}$	0.9%stat 3.2%syst	

* assuming Belle II improved systematics by a factor 2

Stat. uncertainty is closed to theory precision Sys. is challenging

Probe CP violation at tau-charm factory

Polarization of A hyperons and CPV

• Updated results based on 10B J/ψ events: ~0.42M signals

 $0.7519 \pm 0.0036 \pm 0.0019$

 $-0.7559 \pm 0.0036 \pm 0.0029$

 $-0.0025 \pm 0.0046 \pm 0.0011$

 $0.7542 \pm 0.0010 \pm 0.0020$

 α_{-}

 α_+

 A_{CP}

 $\alpha_{\pm,avg}$

• Decay asymmetries with best precisions ever **CP test** $A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$

 $0.750 \pm 0.009 \pm 0.004$

 $-0.758 \pm 0.010 \pm 0.007$

 $0.006 \pm 0.012 \pm 0.007$

 $0.754 \pm 0.003 \pm 0.002$

 0.642 ± 0.013

 -0.71 ± 0.08

0.5% level sensitivity for CPV test SM prediction: $10^{-4} \sim 10^{-5}$

CPV in *A* **decay with polarized electron beam**

19

 $P_e=0$

CPV in $J/\psi \rightarrow \Xi\overline{\Xi}$ decay

Parameter	This work	Previous result						
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$ ³⁸						
$\Delta \Phi$	$1.213\pm 0.046\pm 0.016$ rad.	-						
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010 ²²						
фΞ	$0.011\pm 0.019\pm 0.009$ rad.	-0.037 ± 0.014 rad. ²²						
$\alpha_{\overline{\Xi}}$	$0.371 \pm 0.007 \pm 0.002$	-						
$\phi_{\overline{\Xi}}$	$-0.021\pm 0.019\pm 0.007$ rad.	-						
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004^{-3}$						
$\alpha_{\overline{\Lambda}}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$ ³						
$\xi_p - \xi_s$	$(1.2\pm3.4\pm0.8)\times10^{-2}$ rad.	-						
$\delta_p - \delta_s$	$(-4.4\pm3.6\pm1.8)\times10^{-2}$ rad.	$(8.7\pm3.3)\times10^{-2}~{\rm rad.^2}$						
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	-						
$\Delta \phi^{\Xi}_{CP}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~{\rm rad}$	l. –						
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm12\pm7)\times10^{-3}$ ³						
$<\phi_{\Xi}>$	$0.016\pm 0.014\pm 0.007$ rad.	Nature 606, 64 (2022)						

- > 1.3 B J/ψ yields 73k J/ψ → $\Xi^-\overline{\Xi}^+$ events at BESIII.
- First limit on weak phase of a P-wave amplitude!

Strong phaseWeak phase
$$\mathcal{A}_{CP}^{Y} \equiv \frac{\alpha_{Y} + \alpha_{\bar{Y}}}{\alpha_{Y} - \alpha_{\bar{Y}}} = -\sin(\delta_{y\pi}^{P} - \delta_{y\pi}^{S})\sin(\xi_{Y}^{P} - \xi_{Y}^{S})$$

$$\xi_{\Xi}^{P} - \xi_{\Xi}^{S} = 0.7^{\circ} \pm 2.0^{\circ} \in \{-2.6^{\circ}, +4.0^{\circ}\} (90\% \text{ C.L.})$$

$$\delta_{\Lambda\pi}^{P} - \delta_{\Lambda\pi}^{S} = -2.3^{\circ} \pm 2.1^{\circ} \in \{-5.8^{\circ}, +1.2^{\circ}\} (90\% \text{ C.L.})$$

- > STCF will produce 3.4 trillion J/ψ , the sensitivity is expected to be $\Delta(\xi_{\Xi}^{P} \xi_{\Xi}^{S}) \sim 0.04^{\circ}$
- > SM prediction of $\xi_{\Xi}^{P} \xi_{\Xi}^{S}$ to be $(-0.01 \pm 0.01)^{\circ}$
- Any significance deviation from zero will indicate new CPV beyond SM!

Sensitivity of precision measurements

Precision frontier for testing of SM parameters, uncertainties from reducible (selection-based), and irreducible sources (theoretical input, instrument effect).

Sensitivity of rare/forbidden decays

- Sensitivity of various rare/forbidden decays from STCF measurements are compared with various BSM models.
- > The excellent precision from STCF can be used to distinguish from various BSM models.

STCF accelerator

Challenge: realize luminosity of >0.5x10³⁵ cm⁻² s⁻¹

$$L(cm^{-2}s^{-1}) = \frac{\gamma n_b I_b}{2 e r_e \beta_y^*} H \xi_y$$

Interaction Region: Large Piwinski Angle Collision + Crabbed Wais

burgers and a series of the se

- > Length: 400m
- e⁺, a convertor, a linac and a damping ring, 0.5 GeV
- e⁻, a polarized e- source, accelerated to 0.5 GeV
- ▶ No booster, 0.5 GeV \rightarrow 1~3.5 GeV 23

STCF detector

Requirement:

- High detection efficiency and good resolution
- Superior PID ability
- Tolerance to high rate/background environment

PID

 π/K (and K/p): 3-4 σ separation up to 2GeV/c

EMC

E range: 0.025-3.5 GeV

 $\sigma_{\text{E}} @ 1 \text{ GeV: } 2.5\% \text{ in barrel,} \\ 4\% \text{ at endcaps}$

Pos. Res. : ~ 4 mm

MUD

0.4 - 1.8 GeV

 π suppression >30

Detector options

Tentative plan of STCF

															2032-	2043-
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2042	2046
Form collaboration																
Conception design																
CDR																
R&D																
(TDR)																
Construction																
Operation																
Upgrade																

Summary

- STCF is the next generation tau-charm factory, one of the crucial precision frontier aiming for understanding QCD, testing EW models and probing new physics.
- Many activities on physics/detector/accelerator, three volumes CDR finished.
- Key technology R&D project is now fully funded by Anhui Province, Hefei city and USTC (0.42 B RMB). The project is being conducted.
- An International collaboration is necessary to boost the construction of the project.

