Searching for extremely rare decays at LHCb

Jacco Andreas de Vries

Assistant Professor @ Maastricht University, the Netherlands on behalf of the LHCb collaboration <u>j.devries@cern.ch</u>

30th Rencontres du Vietnam, 'Windows on the Universe' 6-12 Aug 2023, ICISE, Quy Nhon

Maastricht University

Extremely rare decays

- Rarer than 'rare': BR < 10⁻⁶
- Test fundamental assumptions about the SM: Symmetries, new forces/scalars, flavour structure, ...
- Indirect sensitivity to New Physics (quantum loops)
- 3rd generation relatively unexplored

Are in principle 'straightforward' (but maximal sensitivity —> push detector to extremes) Forbidden signal event = New Physics* No signal —> constrain coefficients in EFT

Very rare menu

Baryon number violation
Lepton flavour violation
Dilepton decays
3-body dileptons
Multibody decays
Radiatives
Exotics

Disclaimers

 BR in LHCb normalised to channels known precisely from external measurements

- Limits stated are at 95% CL

Baryon number violation

- Sakharov conditions for (EW) Baryogenesis
- Empirical symmetry that explains proton stability
- BSM models e.g. GUT add gauge bosons X and Y with B/LNV
- Search for $\tau^- \rightarrow p\mu\mu^-$, BR < (4.3-5.7) x 10-7
- Search for $B_{(s)}^0 \to p\mu^-$, BR < 3.1 (14.0) x 10⁻⁹
- Limited by statistics, partially reconstructed
 / misID'd backgrounds

2022

Phys. Lett. B 724, 36-45

arXiv:2210.10412

Lepton flavour violation I

- Neutrino oscillations -> LFV in charged sector (BR < 10⁻⁴⁰)
- BSM models enhanced cLFV, some focus on 3rd generation (eg extended Higgs sectors)
- LF vs Lepton Universality: 'accidental' symmetries of SM New mediators to violate universality (eg LQ, Z') also do LFV. (see e.g. Phys. Rev. Lett. 114, 091801)
- LHCb's Flavour anomaly measurements (see talk by Marie-Hélène Schune) -> LFV test in orthogonal way

Maastricht University

R. Bernstein (RdV 2016)

Possible Contributions to CLFV

Lepton flavour violation II

BR < (0.1-1.2) x 10⁻⁶ 2022 Search for $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$ BR < (1.9-11.7) x 10⁻⁹ 2022 $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$ BR < 19.8 x 10⁻⁹ 2022 $B^0_s \to \phi \mu^{\pm} e^{\mp}$ $B_s^0 \to \phi \mu^{\pm} \tau^{\mp}$ WIP $\Lambda_h^0 \to \Lambda e^{\pm} \mu^{\mp}$ WIP $D^+_{(s)} \to h^+ e^{\pm} \mu^{\mp}$ BR < 10⁻⁶ - 10⁻⁷ JHEP 6 (2021) 044

- Tau reconstruction tau->3pi (pi0), missing energy. Utilise tau flight distance χ^2 and a^0 decay kinematics Fit corrected mass with missing pT.
- **Electron** reconstruction with Bremsstrahlung recovery Background from SL D^(*) and misID $J/\psi X$

Lepton flavour violation III

- Same b->sll' but different topology, no form factors, different backgrounds / systematics
- Search for $B^0_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$, BR < (1.4-4.2) x 10⁻⁵
- Search for $B^0_{(s)} \rightarrow e^{\pm}\mu^{\mp}$, BR < (1.3-7.2) x 10-9 Update WIP
- LQ enhancement of BR($\tau\mu$) up to 10⁻⁵, Pati-Salam 10⁻⁴ BR($e\mu$) mode up to 10⁻¹¹.
- D⁰ → e[±]μ[∓], BR < 1.3 x 10⁻⁸ (@90% CL) Phys. Lett. B 754, 167
 Using D* → D⁰π⁺. BR Could be up to 10⁻⁶ in mSUSY.
 τ⁻ → μ⁺μ⁻μ⁻, BR < 4.6 x 10⁻⁸
 JHEP 02 (2015) 121
 Srd gen, lepton-lepton Update WIP

UM

these so-called 'flavour anomaly' measurements, compared to the standard model predictions - which lie more than 3 margins of which is than 3 R_K, R_{K^*} and $B_s \to \mu^+\mu^-$ data, similar to Table II.

Dileptons - results

$$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}, BR = (3.1 + 0.5) \times 10^{-9}$$
Phys. Rev. D 105 012010
Phys. Rev. Lett. 128 0
$$B_{(s)}^{0} \rightarrow e^{+}e^{-}, BR < (3.0-11.2) \times 10^{-9}$$
Phys. Rev. Lett. 124 211802
$$B_{(s)}^{0} \rightarrow \tau^{+}\tau^{-}, BR < (2.1-6.8) \times 10^{-3}$$
Phys. Rev. Lett. 118 251802
$$D^{*0} \rightarrow \mu^{+}\mu^{-}, BR < 3.4 \times 10^{-8}$$
arXiv:2304.01981
2023
$$D^{0} \rightarrow \mu^{+}\mu^{-}, BR < 7.6 \times 10^{-9}$$
Phys. Lett. B 725 15
$$K_{S}^{0} \rightarrow \mu^{+}\mu^{-}, BR < 2.4 \times 10^{-10}$$
Phys. Rev. Lett. 125 231801

Maastricht University

Multibody final states

- Rare FCNC modes, can generically be enhanced by various BSM physics
- $B_{(s)}^0 \to \mu^+ \mu^- \mu^+ \mu^-$, BR < (1.8-26) x 10⁻¹⁰ JHEP 2203 (2022) 109
- $K_S^0 \to \mu^+ \mu^- \mu^+ \mu^-$, BR < 5.1 x 10⁻¹² (@90% CL) arXiv:2212.04977
- $B_d^0 \to \phi \mu^+ \mu^-$, BR < 3.2 x 10⁻⁹ (@90% CL) JHEP 05 (2022) 067
- First observations at 10⁻⁷, limits at 10⁻⁸ for semi-hadronic m probing flavour structure, hadronic resonances, CPV... $B^{0(+)} \to (K^+)\pi^+\pi^-\mu^+\mu^-$,

JHEP 04 (2017) 029

$$D^0 \to \{\pi^- \pi^+, K^- \pi^+, K^- K^+\} \mu^- \mu^+,$$

 $\Lambda_b \to p\{\pi^-, K^-\}\mu^+\mu^-$

Maastricht University

UM

Radiatives

- Varying $b \rightarrow s\gamma$ topologies, probing photon coupling $C_7^{(\prime)}$.
- Reconstruction challenging
- $\Lambda_b^0 \rightarrow \Lambda \gamma$ First observation, BR = (7.1 +- 1.8) x 10⁻⁶ <u>Phys. Rev. Lett. 123 031801</u> - $\Xi_b^- \rightarrow \Xi^- \gamma$, BR < 1.3 x 10⁻⁴ <u>JHEP 2201 (2022) 069</u> - $B_{(s)}^0 \rightarrow \mu^+ \mu^- \gamma$, BR < 2.0 x 10⁻⁹ ISR large photon momentum <u>Phys. Rev. Lett. 128 041801</u>
- Testing QCD factorisation $B_{(s)}^{0} \rightarrow J/\psi\gamma$: BR < (1.5-7.3) x 10⁻⁶ (@90% CL) <u>Phys. Rev. D 92 112002</u> $W^{+} \rightarrow D_{s}^{+}\gamma (Z \rightarrow D^{0}\gamma)$: BR < 6.5 x 10⁻⁴ (2.1 x 10⁻³) <u>arXiv:2212.07120</u> Maastricht University

Exotics

- Search for 'BSM' decay signatures directly, set limits as mass vs decay time / coupling
- Hidden-Sector Bosons in long-lived dimuon resonances: $B^{0(+)} \to K^{*0(+)} \mu^+ \mu^-$

Phys. Rev. D 95 071101 Phys. Rev. Lett. 115 161802

- Long-lived particles in $e^{\pm}\mu^{\mp}\nu$, $\mu^{\pm}q_iq_j$
- Heavy Neutral Leptons in $W^+ \rightarrow \mu^+ \mu^\pm jet$ Eur. Phys. J. C81 248
- Majorana neutrino's in $B^- \rightarrow \pi^+ \mu^- \mu^-$ ' $0\nu\beta\beta$ ', limits at BR < 4.0 x 10⁻⁹ for τ_N < 1 ps. Phys. Rev. Lett. 112 131802

- Strong CP Violation in $\eta \rightarrow \pi^+ \pi^-$, BR < 1.6 x 10⁻⁵ (@90% CL) <u>Phys. Lett. B 764 233</u>
- (long-lived) dimuon resonances at low mass, Υ mass, dark photons JHEP 10 (2020) 156 JHEP 09 (2018) 147

Maastricht University

UM

Conclusions

LHCb is an excellent laboratory for very rare decays

Very rare decays provide an extensive physics programme, - testing SM assumptions, searching for BSM physics

- Model (in-)dependent contributions

Many limits close to NP expectations, many observations statistically limited for further studies

14