

Charmed Baryons at LHCb

Chuangxin Lin

University of Chinese Academy of Sciences

(On behalf of the LHCb Collaboration)

Rencontres du Vietnam, 2023, 6th-12th August, Quy Nhon, Vietnam

Introduction

PDG2022 Chin. J. Phys. 78 (2022) 324

Charmed baryon spectroscopy and properties are very important to probe low-energy non-perturbative QCD dynamics

Charmed baryon properties:

Mass, width (lifetime) Production Branching fraction Quantum numbers (I^G , J^{PC}) Decay parameters ...

Searching for new charmed baryons:

Missing particles in charmed sector:

- Ground *ccq*, *ccc* states
- Excited *cqq* states

Inner structure of excited states:

- Pentaquark (hidden $q\bar{q}$)? Molecular?
- Radially mode? Orbital mode?

Charmed spectroscopy at LHCb

The world's largest samples of reconstructed charmed baryons are collected with LHCb during LHC Run1 and Run2

[LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, LHCb-FIGURE-2021-001, 2021, and 2023 updates]

11 new charmed baryons discovered at LHCb (1 doubly-charmed and 10 singly-charmed)

The LHCb experiment

JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

Single arm spectrometer, 25% of $b\overline{b}$ pairs produced in the acceptance

Designed to study heavy hadron decays

Unique kinematic region: high rapidity (2 $<\eta<$ 5) and low $p_{\rm T}$

Excellent vertexing, tracking, momentum resolution and particle identification

Overview of selected results

Singly charmed baryon:

Observation of Cabibbo-suppressed two-body decays of $\Omega_c^0 \sim New$

Precise mass measurement of $\Omega_c^0 \sim New$

Lifetime measurements of Ω_c^0 and Ξ_c^0

Charmed baryon excited states:

Observation of new excited Ω_c^0 states Search for new excited Ξ_c^0

Doubly charmed baryon:

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+}\pi^{+}$ decay Searches for Ξ_{cc}^{+} and Ω_{cc}^{+} LHCb-PAPER-2023-011 in preparation

Sci. Bull. 67 (2022) 479

PHYS. REV. LETT. 118 (2017) 182001 PHYS. REV. D 97 (2018) 5, 051102 PHYS. REV. D 104 (2021) L091102 arXiv: 2302.04733

PHYS. REV. LETT. 124 (2020) 222001 arXiv: 2211.00812

JHEP 05 (2022) 038

Sci. China Phys. Mech. Astron. (2020) 63: 221062 Sci. China Phys. Mech. Astron. (2021) 64: 101062

Observation of $arOmega_c^0 o arOmega^- K^+$ and $arOmega_c^0 o arEa^- \pi^+$

LHCb-PAPER-2023-011 in preparation

Using LHCb 2016-2018 dataset, at 13 TeV and 5.4 fb^{-1}

Signal candidates: ~400 for $\Omega_c^0 \to \Omega^- K^+$ and ~2800 for $\Omega_c^0 \to \Xi^- \pi^+$ (both >10 σ)

Our results are larger than the predictions from current algebra or light-front quark model The non-factorizable contributions are crucial to accurately calculate the BFs

Precise mass measurement of $arLambda_c^0$

LHCb-PAPER-2023-011 in preparation

Using LHCb 2016-2018 dataset, at 13 TeV and $5.4~{\rm fb}^{-1}$

- no

The fit result of Cabibbo-favoured decay $\Omega_c^0 \rightarrow \Omega^- \pi^+$, signal candidates ~9300 PDG2022

 $\begin{array}{c|c} \Lambda_c^+ \, {}_{\rm MASS} & 2286.46 \pm 0.14 \, {}_{\rm MeV} \\ \hline \Xi_c^+ \, {}_{\rm MASS} & 2467.71 \pm 0.23 \, {}_{\rm MeV} \, {}_{\rm (S\,=\,1.3)} \\ \hline \Xi_c^0 \, {}_{\rm MASS} & 2470.44 \pm 0.28 \, {}_{\rm MeV} \, {}_{\rm (S\,=\,1.2)} \\ \hline \Omega_c^0 \, {}_{\rm MASS} & 2695.2 \pm 1.7 \, {}_{\rm MeV} \, {}_{\rm (S\,=\,1.3)} \end{array}$

Systematic uncertainty:

Source	$\delta M \; [\text{MeV}]$
Momentum scale calibration	0.27
Energy loss correction	0.03
Fit model	0.01
Total	0.27
External input mass	0.30

 $M(\Omega_c^0) = 2695.28 \pm 0.07 \,(\text{stat}) \pm 0.27 \,(\text{syst}) \pm 0.30 \,(\text{ext}) \,\text{MeV}.$

Improving the precision of the previous world-average by a factor of four

Lifetime measurement of Ω_c^0 and Ξ_c^0

Sci. Bull. 67 (2022) 479

Using LHCb 2016-2018 dataset, at 13 TeV and 5.4 fb⁻¹ (Prompt production) Two-dimensional unbinned extended maximum likelihood fits are performed to the invariant-mass and $\log_{10} \chi_{\rm IP}^2$ distributions

 $\tau_{\Xi_c^0} = 148.0 \pm 2.3 \pm 2.2 \pm 0.2 \,\mathrm{fs}$

Our results confirm the charmed-hadron lifetime hierarchy from the secondary studies,

improve the precision of the previous Ω_c^0 lifetime by a factor of two

Excited Ω_c^0 states

PHYS. REV. LETT. 118 (2017) 182001 PHYS. REV. D 97 (2018) 5, 051102 PHYS. REV. D 104 (2021) L091102

In 2017, five new excited Ω_c^0 are observed by LHCb, four of them confirmed by Belle

New excited Ω_c^0 states

arXiv: 2302.04733

New excited states observed: $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$

All previous states confirmed, and masses and widths improved with the highest precision

Detail study of the threshold enhancement Study of the $\Omega_c(3185)^0$ with alternative model

As systematic uncertainty

Comparison of excited Ω_c^0 results

Three $m(\Xi_c^+K^-)$ studies from LHCb, and one $m(\Xi_c^+K^-)$ study from Belle

PHYS. REV. LETT. 118 (2017) 182001 PHYS. REV. D 97 (2018) 5, 051102 PHYS. REV. D 104 (2021) L091102 arXiv: 2302.04733

(a)

Excited Ξ_c^0 states

PHYS. REV. LETT. 124 (2020) 222001

Using LHCb 2016-2018 dataset, at 13 TeV and 5.4 fb⁻¹ Three excited Ξ_c^0 were observed in prompt $m(\Lambda_c^+K^-)$ The significances of these excited Ξ_c^0 are >>5 σ

Resonance	Peak of ΔM [MeV]	Mass [MeV]	$\Gamma \ [MeV]$
$\Xi_c(2923)^0$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$
$\Xi_c(2939)^0$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$
$\Xi_c(2965)^0$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1\pm0.9\pm1.3$

Stat. Sys. input

New excited Ξ_c^0 states?

arXiv: 2211.00812

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+} \pi^{+}$

JHEP 05 (2022) 038

In 2017, Ξ_{cc}^{++} was first observed via $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ at LHCb (Phys. Rev. Lett. 119 (2017) 112001) $\Xi_{cc}^{++} \rightarrow \Xi_c^{\prime+} \pi^+$ is reconstructed partially using LHCb 2016-2018 dataset The result is not consistent with current theoretical predictions Prediction regions of BF ratio are (0.30, 0.83) or (4.33, 6.74)

Search for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$

Sci. China Phys. Mech. Astron. (2020) 63: 221062

Using LHCb Run1+Run2 data, at 7, 8, 13 TeV and 9 fb^{-1}

No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c²

Upper limits are set at 95% credibility level on the ratio of $\sigma \times B$

The UL depends strongly on the mass and lifetime of Ξ_{cc}^+ 0.45×10⁻³ (2.0) for 40 fs to 0.12×10⁻³ (0.5) for 160 fs

The largest upper limits on production ratios:

Lifetime	$\sqrt{s} = 8 \mathrm{TeV}$		$\sqrt{s} = 13 \mathrm{TeV}$		
	$\mathcal{R}(\Lambda_c^+)$ [×10 ⁻³]	$\mathcal{R}(\Xi_{cc}^{++})$	$\mathcal{R}(\Lambda_c^+)$ [×10 ⁻³]	$\mathcal{R}(\Xi_{cc}^{++})$	
$40\mathrm{fs}$	6.5	8.8	0.45	2.0	
$80\mathrm{fs}$	2.1	2.8	0.22	1.0	
$120\mathrm{fs}$	1.2	1.6	0.15	0.6	
$160\mathrm{fs}$	0.9	1.2	0.12	0.5	

Search for $\Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+$

Sci. China Phys. Mech. Astron. (2021) 64: 101062

Using LHCb 2016-2018 dataset, at 13 TeV and $5.4 \ {\rm fb}^{-1}$

No significant signal is observed within the mass range from 3.6 to 4.0 GeV/c²

Upper limits are set at 95% credibility level on the ratio of $\sigma \times B$ The highest UL is 0.11 (40 fs) and the lowest is 0.005 (200 fs)

 $R \equiv \frac{\sigma(\Omega_{cc}^{+}) \times \mathcal{B}(\Omega_{cc}^{+} \to \Xi_{c}^{+}K^{-}\pi^{+}) \times \mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}) \times \mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})}$

16

Trigger by one of the Ξ_c^+ (Λ_c^+):

Year			α (10 ⁻²)		
	$ au = 40 \mathrm{fs}$	$ au = 80\mathrm{fs}$	$\tau = 120 \mathrm{fs}$	$\tau = 160 \mathrm{fs}$	$ au = 200 \mathrm{fs}$
2016	0.86 ± 0.17	0.46 ± 0.09	0.32 ± 0.06	0.25 ± 0.05	0.22 ± 0.04
2017	1.29 ± 0.20	0.69 ± 0.11	0.48 ± 0.07	0.38 ± 0.06	0.33 ± 0.05
2018	1.26 ± 0.18	0.67 ± 0.10	0.47 ± 0.07	0.37 ± 0.05	0.32 ± 0.05

Conclusions

Presented a selection of the latest LHCb results on charmed baryons

- ✓ Observation of Cabibbo-suppressed two-body decays of Ω_c^0
- ✓ Confirmed the lifetime hierarchy of Ω_c^0 and Ξ_c^0
- ✓ Observation of new excited Ω_c^0 and new excited Ξ_c^0
- ✓ Observation of $\Xi_{cc}^{++} \to \Xi_{c}^{\prime+}\pi^{+}$ and searches for Ξ_{cc}^{+} and Ω_{cc}^{+}

Provides a wealth of information for theory community

More data is need to confirm and better investigate these results

Thank you for your attention!