

Evgueni Goudzovski

UNIVERSITY^{OF} BIRMINGHAM

Outline:

- 1) Introduction: rare kaon decays
- 2) HIKE Phase 1: $K^+ \rightarrow \pi^+ \nu \nu$ and other measurements
- 3) HIKE Phase 2: $K_L \rightarrow \pi^0 \ell^+ \ell^-$ measurement
- 4) Summary

Windows on the Universe Quy Nhon, Vietnam • 8 August 2023

Rare kaon decays

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	$SM \; BR \times 10^{11}$	Exp. $BR \times 10^{11}$
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	< <mark>28</mark> (@ 90% CL)
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	< 38
$K^+ \to \pi^+ \nu \overline{\nu}$	90%	4%	8.6±0.4	10.6±4.0
$K_L \to \pi^0 v \overline{v}$	>99%	2%	3.0±0.2	< 300

*Approx. error on LD-subtracted rate excluding parametric contributions

- FCNC processes dominated by Z-penguin and box diagrams.
- SM rates determined by V_{CKM}, with minimal non-parametric "theory" uncertainties.
- Theory errors are being reduced [Lattice QCD, e.g. arXiv:2203.10998].
- * The current focus is on $K \rightarrow \pi \nu \nu$: uniquely clean theoretically.

LFU test with K decays LFU test with K decays

K $\rightarrow \pi \nu \nu$: theory and experiment [More details: talk by Monica Pepe]

"Golden modes": extremely rare decays, precise SM predictions.

- ♦ Maximum CKM suppression: $\sim (m_t/m_W)^2 |V_{ts}^*V_{td}|$.
- No long-distance contributions from amplitudes with intermediate photons.
- Hadronic matrix element extracted from measured $BR(K_{e3})$ via isospin rotation.

Mode	Standard Model BR	Experimental status	
$K^+ \rightarrow \pi^+ \nu \nu$	(8.60±0.42)×10 ⁻¹¹	(10.6±4.0)×10 ⁻¹¹ (NA62 Run 1)	
$K_L \rightarrow \pi^0 \nu \nu$	(2 0/+0 15)~10-11	BR<300×10 ⁻¹¹ at 90% CL	
	(2.94±0.15)×10	(KOTO 2015 data)	

Standard Model BR: a recent $|V_{cb}|$ and γ -independent determination. [Buras and Venturini, arXiv:2109.11032]

E. Goudzovski / Quy Nhon, 8 August 2023

$K_{\pi\nu\nu}$ measurement at NA62 [More details: talk by Monica Pepe]

History of $K^+ \rightarrow \pi^+ \nu \nu$ searches

The HIKE proposal

- SPS fixed target operation foreseen until at least 2038.
- HIKE ("High-Intensity Kaon experiments"): a long-term programme rare kaon decay programme at the SPS.
- * Multiple phases: K^+ and K_L decay experiments.
- Beam intensity: up to ×6 wrt NA62 (~1.5×10¹⁹ pot/year).
- ✤ A clear insight into the flavour structure of new physics.
- ✤ A few times 10¹⁹ pot to be collected in beam dump mode.
- Snowmass paper: arXiv:2204.13394; Lol: arXiv:2211.16586.
- Proposal for Phases 1 and 2: to be submitted in August 2023.

E. Goudzovski / Quy Nhon, 8 August 2023

HIKE Phase 1: $K^+ \rightarrow \pi^+ \nu \nu$

A multi-purpose K⁺ experiment; K⁺ $\rightarrow \pi^+ \nu \nu$ at 5% precision in 4 years.

- ✓ Challenge: 20 ps time resolution for key detectors to keep random veto under control, while maintaining all other NA62 specifications.
- ✓ Improved signal acceptance (higher detector granularity, fully software trigger).
- ✓ Challenges aligned with HL-LHC projects and future flavour/dark matter exp.

New pixel beam tracker (GTK):

time resolution: <50 ps per plane; pixel size: <300×300 μm²; efficiency: >99% per plane (incl.fill factor); material budget : 0.3-0.5% X₀; beam intensity: >3 GHz on 30×60 mm²; peak intensity: >8.0 MHz/mm².

A current NA62 GTK station

E. Goudzovski / Quy Nhon, 8 August 2023

New STRAW spectrometer:

operation in vacuum; straw diameter/length: 5 mm/2.2 m; trailing time resolution: ~6 ns per straw; maximum drift time: ~80 ns; layout: ~21000 straws (4 chambers); total material budget: 1.4% X₀.

A current NA62 STRAW chamber

HIKE Phase 1: broader programme

 m_{s} [GeV/c²]

E. Goudzovski / Quy Nhon, 8 August 2023

 $m_a [GeV/c^2]$

HIKE Phase 2: $K_L \rightarrow \pi^0 \ell^+ \ell^-$

K, momentum [GeV/c]

Greenlee background (1)

Greenlee background (2)

HIKE Phase 2: sensitivity

- - SM signal yields and backgrounds in 5 years of operation:

Mode	N_S	N_B	$N_S/\sqrt{N_S+N_B}$
$K_L \rightarrow \pi^0 e^+ e^-$	70	83	5.7
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	100	53	8.1

Sensitivity to the CKM parameters (assuming an improved $|a_S|$ measurement with $K_S \rightarrow \pi^0 \ell^+ \ell^-$ at LHCb):

$$\frac{\delta(\mathrm{Im}\lambda_t)}{\mathrm{Im}\lambda_t}\bigg|_{K_L \to \pi^0 e^+ e^-} = 0.33, \quad \frac{\delta(\mathrm{Im}\lambda_t)}{\mathrm{Im}\lambda_t}\bigg|_{K_L \to \pi^0 \mu^+ \mu^-} = 0.28.$$

E. Goudzovski / Quy Nhon, 8 August 2023

Summary

- Precision measurements of both K⁺ and K⁰ decays: an essential part of the worldwide flavour physics programme.
- HIKE at CERN: a proposal for next-generation rare K⁺ and K_L decay experiments with high-intensity beams (~1.5×10¹⁹ pot/year).
- HIKE Phase 1: a multi-purpose K⁺ decay experiment.
 - $\checkmark\,$ Building on the NA62 experience.
 - \checkmark Same or better performance at x4 beam intensity.
 - ✓ Main goal: **BR**(K⁺→ $\pi^+\nu\nu$) measurement at 5% precision.
 - ✓ Other goals: LFU test in $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ decays; LF/LN conservation, first-row CKM unitarity, low-energy QCD tests; hidden sectors.
- HIKE Phase 2: a multi-purpose K_L decay experiment.
 - $\checkmark\,$ Phase 1 detectors and a new neutral beamline.
 - ✓ Main goal: first observation & measurement of $K_L \rightarrow \pi^0 \ell^+ \ell^-$ decays.
- Beam-dump physics with $\sim 10^{19}$ pot is part of the HIKE programme.

More details: the upcoming proposal