Belle II Highlights

Doris Yangsoo Kim on behalf of the Belle II collaboration

August 8, 2023 30th Anniversary of the Rencontres du Vietnam: Windows on the Universe ICESE, Quy Nhon, Vietnam

Belle II Experiment in a Nutshell

- HEP experiments have seen huge accomplishments during the last decades.
 - CPV/CKM, discovery of XYZ/tetra/penta particles, discovery of Higgs, etc.
 - Next major theme: New Physics, requiring more precision and larger samples.
- Belle II/SuperKEKB is the upgrade of Belle/KEK.
- Upsilon(4S) decays into $B \overline{B}$ meson pairs, coherently with no additional fragments.
 - Full event reconstruction tagging possible
- Direct detection of neutrals such as γ , π^0 , K_L.
- A hermetic detector:
 - Detection of neutrinos or invisibles as missing energy/momentum.
- Large continuum charm and τ samples in addition to B samples.
 - Detect both e and μ with similar performance.
 - For example, search for LFV τ decays at $O(10^{-9})$ possible.

Belle II Physics Prospects

https://confluence.desy.de/display/BI/Snowmass+2021

- Charm decays
- Next precision CKM matrix
 - Semileptonic B decays (CKM elements)
 - Hadronic B decays (angles and CPV)
 - Time dependent CP violation
- τ physics
- Hadron spectroscopy
- Rare decays, FCNC
- New physics
 - Lepton flavor violation
 - Dark sector, long lived particles

Belle II Physics Book, PTEP 2019, 123C01

The Belle II Detector

du Vietnam, August 8, 2023

The Belle II Collaboration

Doris Yangsoo Kim @ Rencontres du Vietnam, August 8, 2023

SuperKEKB Luminosity: Current Status

- After the SupepKEKB commission phases, physics runs started spring 2019.
- Spring/summer 2022 run ended June.
 - Peak luminosity at $L_{peak} = 4.7 \times$ $10^{34} cm^{-2} s^{-1}$, the current world record on June 22nd.
 - Current integrated luminosity at $\int L_{recorded} dt = 424 \ fb^{-1}.$ (~ Babar, ~ $\frac{1}{2}$ Belle)
- Long shutdown 1 (LS1) started 2022 summer for upgrades (see later slides).
- Run 2 starts coming fall/winter.

https://confluence.desy.de/display/BI/Belle+II+Luminosity

Charm Particle Lifetime

- Charm particles @ low-energy QCD calculation (nonperturbative and high order correction). The effective models do have uncertainties.
- Measurements of charm lifetimes can test the models.
- At SuperKEKB, $\sigma_{c\bar{c}} \sim \sigma_{b\bar{b}}$. Large charm sample.
- e⁺ e⁻ collision gives clean environment. Less bias.
- Small interaction region and the new Belle II vertex detector give strong constraints and better resolutions.
 - Amount of t < 0: detector resolution
- A great opportunity to measure the world best charm lifetimes.

Doris Yangsoo Kim @ Rencontres du Vietnam, August 8, 2023

Phys. Rev. Lett. 127 (2021), 211801

D⁰, D⁺, D_s⁺, Λ_c^+ , Ω_c^0 Lifetimes

	Mode	Belle II (fs)	Size	Previous WA (fs)	Ref.	
	D^0	$410.5 \pm 1.1 \pm 0.8$	72 fb-1	410.1 ± 1.5	- <u>Phys. Rev. Lett. 127 (2021), 211801</u>	
	D+	$1030.4 \pm 4.7 \pm 3.1$	7250	1040 ± 7		
	D_s^+	$498.7 \pm 1.7 ^{+1.1}_{-0.8}$		504 ± 4	<u>arXiv: 2306.00365</u>	
	Λ_{c}^{+}	$203.2 \pm 0.9 \pm 0.8$	$207 \ fb^{-1}$	202.4 ± 3.1	<u>Phys. Rev. Lett. 130 (2023), 071802</u>	
Do du	Ω_c^{0}	$243 \pm 48 \pm 11$	207 90	$\begin{array}{c} 268 \pm 24 \pm 10 \text{ LHCb} \\ 69 \pm 12 \text{ pre-LHCb} \end{array}$	<u>Phys. Rev. D 127 (2023), L031103</u>	

Full Event Interpretation for $B\overline{B}$ Reconstruction

- Traditionally, at Upsilon(4s), one B (tag) is reconstructed first. The rest of the event is considered as a signal B.
 - B flavor tagging (page 11)
- An improved tool (FEI) was developed based on Boosted Decision Tree.
 - T. Keck et al., Comput. Softw. Big Sci. 3, 6 (2019)
 - MVA based. $O(10^4)$ decay channels.
 - Max. tag side efficiency: $\epsilon_{had}\approx 0.5\%~$ and $\epsilon_{SL}\approx 2\%$
 - ex) Paolo Rocchetti's talk. This talk page 13.

Hierachial reconstruction is performed to obtain B (tag) meson exclusively. Then use the Upsilon(4S) constraint to get the B (sig) meson.

Why CKM Matrix?

- Unitary triangle constraints are powerful test of the SM.
 - Precision on α and γ angles are much less than β .
- Predicting rare decays involves $V_{qq'}$. Needed for New Physics searches.
 - Use semi-leptonic, leptonic decays of mesons.

Doris Yangsoo Kim @ Rencontres du Vietnam, August 8, 2023

Time Dependent CPV and Mixing in B physics

Doris Yangsoo Kim @ Rencontres du Vietnam, August 8, 2023 Phys. Rev. D 127 (2023), L091102

Next, sin 2β

Proper time differences

Туре	Mode	$sin2\beta = S$	$A_{CP} = -C$	Ref.
$b \rightarrow c\bar{c}s$	$B^0 \to J/\psi K_S^0$	$0.720 \pm 0.062 \pm 0.016$	$0.094 \pm 0.044^{+0.042}_{-0.017}$	<u>arXiv:2302.12898</u>
$b \rightarrow s\bar{s}s$	$B^0 \to \phi K_S^0$	$0.54 \pm 0.25^{+0.06}_{-0.08}$	$0.31 \pm 0.20 \pm 0.05$	arXiv:2307.02802
$b \rightarrow d\bar{d}s$	$B^0 \to K_S^0 \pi^0$	$0.75^{+0.20}_{-0.23} \pm 0.04$	$0.04^{+0.15}_{-0.14} \pm 0.05$	<u>arXiv:2305.07555</u>
$b \rightarrow d\bar{d}s$	$B^0 \to K^0_S K^0_S K^0_S$	$-1.37^{+0.35}_{-0.45}\pm0.03$	$0.07^{+0.15}_{-0.20} \pm 0.02$	<u>Moriond 2023,</u> arXiv:2209.09547

Doris Yangsoo Kim @ Rencontres du Vietnam, August 8, 2023

$$\boldsymbol{\beta} = \boldsymbol{\phi}_1$$

Fully Inclusive $B \rightarrow X_s \gamma$

Belle II preliminary

2000

1750

1500

1250

1000

750

500 250

1.4

1.6

1.8

2.0

 E_{v}^{B} reconstructed [GeV]

interval

 E^B_{χ}

per

Fitted yields

 $\int \mathcal{L} = 189 \text{ fb}^{-1}$

2.6

2.4

2.8

13

Yields from data fit

Total simulation uncertainty

Signal region

2.2

BB backgrounds

- An effective to way to search for NP in $b \rightarrow s\gamma$ channel. FCNC forbidden at tree level SM.
- 189 fb^{-1} sample fitted in bins of E_{ν}^{B} (photon energy in \bullet B_{sig} rest frame) simultaneous with B_{tag} mass
- FEI used. Tag side is B hadronic decays
- Signal photon background veto from pi0 and eta. Further suppression by a BDT classifier. X_s candidate is isolated.
- Though efficiency is low at < 1%.

SuperKEKB Upgrade during LS1

- The sudden beam loss mitgation strategy.
- Reducing beamline neutrons by additional shielding around final-focus magnets and endcaps
- Collimators: harder material, non-linear to decrease beam halo
- For stability and increase in currents, RF cavity being replaced.
- Injector area: faster kicker magnet, new focusing magnet, new large-aperture beam pipe

For LS2 plan, <u>LP 2023 talk</u> by L. Piilonen

Doris Yangsoo Kim @ Rencontres du Vietnam, August 8, 2023

Belle II Upgrade during LS1

- One layer \rightarrow two layer pixel detector (PXD)
- TOP PMT replaced for increased lifespan and robustness
- DAQ upgrade to PCIe40
- Improved gas distribution, gain stability, and monitoring for drift chamber

Summary

- SuperKEKB has achieved $L_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$, the world record on June 22nd, 2022.
 - It is a super B factory now.
- Belle II published world leading results in charm lifetime. D lifetime full set!
 - More updates are coming with the $424 fb^{-1}$ sample.
- Belle II started producing results on many interesting physics from B and other sectors.
 - Only a few selected topics are shown here.
 - Detailed reports at Moriond 2023, LP 2023
 - For published and submitted papers, <u>https://confluence.desy.de/display/BI/Journal+Publications</u>
- This is a very exciting time to do flavor physics, looking for physics beyond the Standard Model.

Doris Yangsoo Kim @ Rencontres du Vietnam, August 8, 2023 docs.belle2.org

https://confluence.desy.de/display/BI/Public+ConferenceTalks