

OZLEM OZCELIK

(ON BEHALF OF LHCB, ATLAS AND CMS COLLABORATIONS)

CP VIOLATION AND MIXING IN B AND CHARM DECAYS

VIETNAM, 2023

Outline

- γ angle measurement [LHCb-CONF-2022-003]
- CPV measurements in beauty sector
 - $B_s^0 \rightarrow \phi \phi$ [arXiv:2304.06198]
 - $B_s^0 \rightarrow \psi K_s^0$ LHCB-PAPER-2023-013 (in preparation)
 - $\phi_s \text{ in } B_s^0 \rightarrow J/\psi \phi$ LHCB-PAPER-2023-016 (in preparation)
 - ϕ_s measurement in CMS [Phys. Lett. B 816 (2021) 136188] and ATLAS [Eur. Phys. J. C 81 (2021) 342]
- CPV measurements in charm sector
 - Time-integrated A_{CP} in $D^0 \rightarrow K^+K^-$ [arXiv:2209.03179]
 - Local CPV search in $D^+_{(s)} \rightarrow K^- K^+ K^- [arXiv:2303.04062]$
 - Local CPV in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ [LHCB-PAPER-2023-005] (in preparation)

• CP violation (CPV) might occur in various ways:

1. Direct CPV

* time-integrated charm analysis will be shown.

 $|A_f|^2 \neq |\bar{A}_f|^2$

• CP violation (CPV) might occur in various ways:

2. CPV in mixing

CP Violation

- CP violation (CPV) might occur in various ways:
 - 3. CPV in interference :

* time-dependent beauty analyses will be shown.

(Updated) y angle combination

- Five new analyses added to the previous LHCb combination
- $B^{\pm} \rightarrow D[K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}] \operatorname{arXiv:} 2209.03692$ • $B^{\pm} \rightarrow D[h^{+}h^{-}h^{0}] \underline{\operatorname{arxiv:}2112.10617}$ • $D^0 \to h^+ h^- \operatorname{arXiv:} 2202.09106$ • $D^0 \to K^+ K^-$ arXiv:2209.03179 • $D^0 \to K_s^0 \pi^+ \pi^- \operatorname{arXiv:2208.06512}$

Previous combination (2021)

LHCb-CONF-2022-003

- $x = (0.389^{+0.50}_{-0.049})\%$
- $y = (0.636^{+0.020}_{-0.019})\%$
- $|q/p| = 0.995^{+0.015}_{-0.016}$
- $\phi = arg(q/p) = (2.5 \pm 1.2)^{\circ}$

new result $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$

CP Asymmetry in $D^0 \rightarrow K^-K^+$ Decays with 5.7 fb⁻¹

- Time-integrated CP asymmetry is measured using prompt $D^{*+} \rightarrow D^0 (\rightarrow K^+ K^-) \pi^+$ decays.
- The combination of previous LHCb measurements of $\mathcal{A}_{cp}(K^-K^+)$ and $\Delta \mathscr{A}_{CP}$ to derive direct asymmetries

• Experimental asymmetries are canceled using prompt D^+ and D_s^+ decays.

arXiv:2209.03179

CP Asymmetry in $D^0 \rightarrow K^-K^+$ Decays with 5.7 fb⁻¹

 $\mathscr{A}_{CP}(K^-K^+) = [6.8 \pm 5.4 \text{ (stat)} \pm 1.6 \text{ (syst)}] \times 10^{-4}$

$$a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4}$$

 $a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4}$

• Evidence of CP asymmetry in $D^0 \to \pi^- \pi^+$ at the level of 3.8σ

arXiv:2209.03179

CPV in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ Decays with 6 fb⁻¹

[LHCB-PAPER-2023-005] (in preparation)

- LHCb 6 fb⁻¹ Data — Model Signal • Dominated by the $D^0 \rightarrow \rho^{\pm} \pi^{\mp}$ amplitudes, similar Background to the "CP-violating" $D^0 \to \pi^- \pi^+$ decays. 20 145 150 155 140 • A model independent method of energy test is used $\Delta m \left[\text{MeV}/c^2 \right]$ $^{223}_{S23}$ [GeV²/ c^4] 5.5 5.5 • Test statistics (T) to quantify local differences of D^0 10^{3} $\substack{\rm LHCb\\ \rm 6\,fb^{-1}}$ and D^0 candidates 10^{2} 2.0• provide p-value by comparing the consistency 1.5 with CP symmetry. 1.0 10^{1} 0.50.0 -----0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 $s_{13}~[{
 m GeV}^2/c^4]$

CPV in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ Decays with 6 fb⁻¹

[LHCB-PAPER-2023-005] (in preparation)

- Method applied to the 2.7M signal candidates
 - ~4 times of the previous analysis
- Measured *p*-value : 62%

-> no local evidence of CPV

*CP symmetry hypothesis from flavour-randomised permutations

CPV in $D^+_{(s)} \rightarrow K^- K^+ K^-$ Decays with 5.6 fb⁻¹

- (Double) Cabibbo-suppressed (D⁺_s)D⁺ → K⁻K⁺K⁻ decays.
 O (CPV is forbidden in SM -> observation indicates New Physics!) or O(10⁻³)
- A novel approach is signal candidates are extracted to search for local CP asymmetries in squared mass bins.
- •Local CP observable S_{CP} is extracted from signal candidates and their statistical uncertainties.

CPV in $D^+_{(s)} \rightarrow K^- K^+ K^-$ Decays with 5.6 fb⁻¹

- No local CPV observed
 - p-values are found to be (13.3%) 31.6% for $D_{(s)}^+ \to K^- K^+ K^-$ decays.

arXiv:2303.04062

$\phi_s^{s\bar{s}s}$ from $B_s^0 \to \phi\phi$ Decays with 6 fb⁻¹

• FCNC decay is produced in three linear polarization states.

 \rightarrow sensitive to NP effects

• P→VV: Flavour-tagged time-dependent angular analysis

•
$$\phi_s^{s\bar{s}s} \approx 0$$
, in SM

$\phi_s^{s\bar{s}s}$ from $B_s^0 \to \phi\phi$ Decays with 6 fb⁻¹

• No polarization dependence observed.

 $\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad}$ R $|\lambda| = 1.004 \pm 0.030 \pm 0.009$ R

- The most precise measurement of CPV in any penguin dominated B decays. 20
- In agreement with the SM.

arXiv:2304.06198

 $sin(2\beta)$ from $B^0 \rightarrow \psi(\rightarrow ll)K_s$ with 6 fb⁻¹

• CP violation is an interference of B^0 decays with and without mixing.

$$\mathscr{A}^{CP}(t) = \frac{\bar{\Gamma}(\bar{B^0}(t) \to f) - \bar{\Gamma}(B^0(t) \to f)}{\bar{\Gamma}(\bar{B^0}(t) \to f) + \bar{\Gamma}(B^0(t) \to f)} = \frac{S}{\cosh(1/t)}$$

LHCB-PAPER-2023-013 (in preparation)

 $\sin(\Delta m_d t) - C\cos(\Delta m_d t)$ $/2\Delta\Gamma_d t$) + $A_{\Delta\Gamma}\sinh(1/2\Delta\Gamma_d t)$

sin(2 β) from $B^0 \rightarrow \psi(\rightarrow ll)K_s$ with 6 fb⁻¹

• CP violation is an interference of B^0 decays with and without mixing.

$$\mathscr{A}^{CP}(t) = \frac{\bar{\Gamma}(\bar{B^0}(t) \to f) - \bar{\Gamma}(B^0(t) \to f)}{\bar{\Gamma}(\bar{B^0}(t) \to f) + \bar{\Gamma}(B^0(t) \to f)} = \frac{S}{\cosh(1A)}$$

$$= \frac{S \sin(\Delta m_d t) - C \cos(\Delta m_d t)}{\cosh(1/2\Delta\Gamma_d t) + A_{\Delta\Gamma} \sinh(1/2\Delta\Gamma_d t)} \approx S \sin(1/2\Delta\Gamma_d t)$$

S = CPV in mixing C = CPV in direct decays

LHCB-PAPER-2023-013 (in preparation)

 $\sin(\Delta m_d t) - C\cos(\Delta m_d t)$ $/2\Delta\Gamma_d t$) + $A_{\Delta\Gamma}\sinh(1/2\Delta\Gamma_d t)$

 $n(\Delta mt) - C\cos(\Delta mt)$

 $[\Delta \Gamma_d = 0]$

$$S_f \approx \sin(2\beta)$$

 $sin(2\beta)$ from $B^0 \rightarrow \psi(\rightarrow ll)K_s$ with 6 fb⁻¹

•An extended maximum likelihood combined fit for 3 modes

•
$$B^0 \rightarrow J/\psi(\rightarrow \mu^+ \mu^-)K_s$$

• $B^0 \rightarrow \psi(2S)(\rightarrow \mu^+ \mu^-)K_s$ $K_s \rightarrow \pi^+$
• $B^0 \rightarrow J/\psi(\rightarrow e^+ e^-)K_s$

•The fit is provide weights for the signal and background candidates.

LHCB-PAPER-2023-013 (in preparation)

 π

sin(2 β) from $B^0 \rightarrow \psi(\rightarrow ll)K_s$ with 6 fb⁻¹

• Simultaneous fit to the three decay modes results in

 $S_{wK_s^0} = 0.7158 \pm 0.0133 \text{ (stat)} \pm 0.0078 \text{ (syst)}$

 $C_{\psi K_s^0} = 0.0120 \pm 0.0123$ (stat) ± 0.0029 (syst)

• The precision of the measurement is higher than world average by HFLAV*

* HFLAV 2021, Eur. Phys. J. C81 (2021) 226

• Time-dependent $B^0 - \overline{B^0}$ yield asymmetry

*with a correlation coefficient of 0.44

sin(2 β) from $B_c^0 \rightarrow \psi K_c$ with 6 fb⁻¹

$sin(2\beta) = 0.699 \pm 0.017 \longrightarrow sin(2\beta) = 0.708 \pm 0.011$ $C_{CP} = 0.005 \pm 0.015$

$\longrightarrow C_{CP} = 0.006 \pm 0.010$

$\phi_s^{c\bar{c}s}$ from $B_s^0 \to J/\psi K^+ K^-$ Decays with 6 fb⁻¹

- Legacy analysis of
 - improvements in calibration of the particle identification (PID)
 - flavor tagging algorithms
 - the decay time resolution model
- $P \rightarrow VV$ time-dependent angular analysis

LHCB-PAPER-2023-016 (in preparation)

$$\phi_{s}^{c\bar{c}s} \text{ from } B_{s}^{0} \rightarrow J/\psi K^{+}K^{-}$$
• $\phi_{s}^{c\bar{c}c} = -0.039 \pm 0.022 \pm 0.006 \text{ [rad]}$
• Most precise measurement to date
• $|\lambda| = 1.001 \pm 0.011 \pm 0.005$
• $\Gamma_{s} - \Gamma_{d} = -0.0056^{+0.0013}_{-0.0015} \pm 0.0014 \text{ [ps^{-1}]}$
• $\Delta\Gamma_{s} = 0.0845 \pm 0.0044 \pm 0.0024 \text{ [ps^{-1}]}$
• No CPV is observed.

2000

Decays with 6 fb-1

<u>Phys. Lett. B 816 (2021) 136188</u>

07/08/23

- CMS fit projections $\mathscr{L} = 96$ fb⁻¹
- SS and OS flavour tagging

 $\phi_s^{c\bar{c}s}$ from $B_s^0 \to J/\psi K^+ K^-$ ATLAS and CMS

- ATLAS fit projections $\mathscr{L} = 80.5$ fb⁻¹
- OS flavour tagging

Eur. Phys. J. C 81 (2021) 342

$\phi_s^{c\bar{c}s}$ HFLAV combination (2023)

•
$$\phi_s^{c\bar{c}c} = -0.039 \pm 0.05$$

• $\Delta \Gamma_s = 0.080 \pm 0.006$
• $\Gamma_s = 0.6627 \pm 0.003$

- 16 [rad] 6 [ps⁻¹]
- 6 [ps-1]

Run 3 and beyond.

al: 50 fb ⁻¹				Goal: 300 fb ⁻¹								
LS3	Run 4			LS4		Run 5			LS5 Run 6			
6 2027 2028	2029 2030	2031 2	2032	2033	2034	2035	2036	2037	2039	2040	2041	2042

LHCb-PUB-2018-009, PoS(KMI2017)005, ATL-PHYS-PUB-2018-041, CMS-PAS-FTR-18-041

Summary

- precise measurements
 - $\sin(2\beta) (B^0 \rightarrow \psi K_s^0) = 0.716 \pm 0.013 \pm 0.08$
 - $\phi_s^{c\bar{c}c}$ with $(B_s^0 \to J/\psi K^+ K^-) = -0.039 \pm 0.022 \pm 0.006$ [rad]
 - $\phi_s^{s\bar{s}s}$ with $(B_s^0 \to \phi\phi) = -0.042 \pm 0.075 \pm 0.009$ [rad]
- First evidence for direct CP violation in $D^0 \rightarrow \pi \pi +$ decays
- •Upgrade I and II will help to improve (still) statistically limited analyses.

• Latest time-dependent measurements of CP violation at LHCb provides the most

