Fermilab (C) ENERGY Office of Science

Searches for Supersymmetry and Dark Matter

Christian Herwig, on behalf of the ATLAS+CMS Collaborations Recontres du Vietnam 30th Anniversary: Windows on the Universe August 8, 2023

Fermilab (C) ENERGY OF Science

Searches for Supersymmetry and Dark Matter

Christian Herwig, on behalf of the ATLAS+CMS Collaborations Recontres du Vietnam 30th Anniversary: Windows on the Universe August 8, 2023

Fermilab CONTRACTOR OF Science

Searches for Supersymmetry and Dark Matter

Christian Herwig, on behalf of the ATLAS+CMS Collaborations Recontres du Vietnam 30th Anniversary: Windows on the Universe August 8, 2023

Setting the context

10 years after the Higgs discovery, we continue to face **deep questions**:

- Is there additional structure to the mechanism of electroweak symmetry breaking?
- Is Dark Matter part of such a deeper theory?
- How exhaustively can we test the possibility of a GeV-TeV scale thermal relic?

LHC Run 2 has provided a large dataset of high-energy collisions to probe weakly-coupled theories.

- We are pushing our detectors to their limits; new capabilities (more next talk)
- Strong theory collaborations → new signatures & search techniques.

Date

Supersymmetry

ᅷ

- SUSY@LHC pheno crash course
- ✓ New spacetime symmetry.
- \checkmark ~ Double the SM particle content.
- ✓ Lightest SUSY Particle = DM?
- ✓ Direct Sparticle production at LHC.

Supersymmetry

ᅷ

- SUSY@LHC pheno crash course
- ✓ New spacetime symmetry.
- \checkmark ~ Double the SM particle content.
- ✓ Lightest SUSY Particle = DM?
- ✓ Direct Sparticle production at LHC.

Supersymmetry

 $pp, \sqrt{s} = 13 \text{ TeV}, \text{ NLO+NLL} - \text{NNLO}_{approx} + \text{NNLL}$

- SUSY@LHC pheno crash course
- ✓ New spacetime symmetry.
- \checkmark ~ Double the SM particle content.
- ✓ Lightest SUSY Particle = DM?
- ✓ Direct Sparticle production at LHC.

SUSY: where are we today?

Since *early 13 TeV data*, the most spectacular signatures face tight constraints.

→ Most notably Strong SUSY

Each color in the plot represents a different model, probed by one or more analyses.

Targeting the electroweak sector

LHC signatures will be dictated by the few (lightest) sparticles.

→ target Simplified Models, where the heavier sparticles decouple.

Next-to-lightest sparticle (NLSP) mass

Aim to systematically cover all production channels, and mass spectra

CMS Electroweakino combination SUS-21-008

Statistical combination of six analyses targeting " $p_{T,miss}$ + (W/Z/h)" final-states. Complementary low/high- p_T , leptonic/hadronic channels.

CMS Electroweakino combination SUS-21-008

Statistical combination of six analyses targeting " $p_{T,miss}$ + (W/Z/h)" final-states. Complementary low/high- p_T , leptonic/hadronic channels.

CMS Electroweakino combination SUS-21-008

Broad sensitivity to Δm of 3-50 GeV.

(Improved signal extraction procedure w.r.t. the initial paper result.)

Together the 2L, 3L, & hadronic channels probe (nearly) **TeV Winos**.

For the latest ATLAS results on EWK SUSY, see talk by S. Passagio.

CMS Photon + Jets + PT,miss

GMSB scenario: EWKinos decay to y + Gravitino

• Search considers both strong+weak production.

Selection: 100 GeV photon and ≥2 jets

 Categories (p_{T,miss}, #(b-)jets, and W/Z/h-jets) probe a range of production modes.

CMS Stealth DiPhoton, low pT,miss SUS-19-001

"Stealth" SUSY extends MSSM w/ (~mass degenerate) Singlet+Singlino

Experimental signature without pT,miss!

Targets events with 2y, significant energy.

Dark Matter searches at the LHC

Simplest WIMP scenario adds only 1 new state: the DM candidate itself.

Minimal s-channel models

New mediators may facilitate SM-DM interaction, leading to several degrees of freedom:

- m_{DM}, mediator masses, couplings to DM, SM.
- Mediator: (Pseudo-)scalar, (Axial-)Vector?
- DM: Dirac, majorana, (scalar, vector)?

Aug 8, 2023

C. Herwig — 30th Recontres du Vietnam

CMS WW+pT,miss

EXO-21-012

ATLAS summary

CMS WW+pT,miss

Dark Higgs model adds a light scalar that can't decay invisibly ($m_s < 2m_\chi$, 'secluded annihilation').

- Relic favors large s-Z' couplings \rightarrow dark h-strahlung. New CMS result: s \rightarrow WW for 2I2v + Ivqq' channels.
- Template fit to $m_{II}/m_{T,min}$ (2L) and BDT analysis (1L).

EXO-21-012

ATLAS summary

Z'

W

UV complete models: 2HDM+a

 $b/\bar{t}/\bar{\chi}$

A/H/a

Model adds Type-II 2HDM (h, H, H[±], A) plus pseudo-scalar mediator and DM (a, χ).

- Recent ATLAS summary considers several benchmark scenarios.
- Combines 3 of the leading channels.

 $\begin{array}{l} E_{\rm T}^{\rm miss} + Z(\ell\ell) \ [74]\\ tbH^{\pm}(tb) \ [76]\\ E_{\rm T}^{\rm miss} + h(b\bar{b}) \ [75] \end{array} \begin{array}{l} E_{\rm T}^{\rm miss} + h(\gamma\gamma) \ [84] \ h \to {\rm invisible} \ [86] \\ h \to aa \to f\bar{f}f'\bar{f}' \ [79-83]\\ E_{\rm T}^{\rm miss} + h(\tau\tau) \ [78] \ E_{\rm T}^{\rm miss} + Z(q\bar{q}) \ [126] \ E_{\rm T}^{\rm miss} + t\bar{t} \ [127, 128]\\ E_{\rm T}^{\rm miss} + tW \ [77] \ E_{\rm T}^{\rm miss} + b\bar{b} \ [127] \ t\bar{t}t\bar{t} \ [85] \ E_{\rm T}^{\rm miss} + j \ [45] \end{array}$

Z/h = g

H/A

ATLAS 2HDM

Most recent addition: mo sensitive to a wide range

- Challenges: broad Higg and Diboson (TTVV) ba
- Signal regions target h total transverse mass.

Aug 8, 2023

40

60

0⁵

10⁴

10³

10²

10

1.5

0

Data/SM

ATLAS

Common SR

Preselection

Post-fit

GeV

Events /

ATLAS ZH(→yy_D)

Search for invisible dark photons in Higgs decays, coupled through a new dark sector.

New ATLAS result in the ZH channel:

 BDT purifies signal region, mainly based on: σ(p_{T,miss}), m_T(γ,p_{T,miss}), and decay angles.

ą

 \sim

ATLAS Z→Dark photons

Search for $Z \rightarrow 3A'$, mediated by a dark Higgs.

A minimal selection requires \geq 4 leptons, with a pair of consistent 2-body ($\gamma_D \rightarrow II$) masses.

 \boldsymbol{q}

Compare to Belle & direct LHCb, CMS searches for the minimal A' ($pp \rightarrow A' \rightarrow \mu\mu$).

ATLAS Semi-visible jets

Strongly-coupled Dark Sectors may lead to "Dark Showers" analogous to the QCD parton shower.

• Some fraction of the resulting π_D , ρ_D may decay to SM.

New ATLAS search for DS production in the t-channel.

Categorize events by the min/max dφ(jet,p_{T,miss}) jets.

EXOT-2022-37

Summary

- The significant 13 TeV dataset deliver by the LHC during Run 2 has lead to an expansive program of searches at ATLAS and CMS.
 - Many state-of-the-art efforts are only possible through an understanding of our detectors and reconstruction developed w/ 10+ years experience.
- Portfolio of SUSY and Dark Matter searches following similar trajectories:
 - A comprehensive program of searches, combinations, and new summary results target a critical set of benchmark models.
 - Meanwhile, new ideas in theory and novel reconstruction techniques expand our sensitivity to previously-unconsidered signatures.
- Looking ahead, more LHC data (and new triggers, upgraded detectors) in Run 3 and the High Luminosity LHC will significantly extend our reach to new weakly-coupled states!