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EDGES of the dark forest

(arXiv: 2301.03624)

> Indirect DM searches have mostly focussed on emission signatures of dark
matter

> Absorption signatures of dark matter is a promising and less-studied territory

> A huge parameter space Is waiting to be explored!




Dark matter as a 2-level system

> Energy splitting

~ Excitation temperature (7,,) characterises the
DM population in two states
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Transitions In 2-state dark matter
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Global absorption feature due to DM in the CMB spectrum
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1., decides the population of dark matter in the ground state and the excited state




Global absorption feature due to DM in the CMB spectrum
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> At high redshifts, collisions dominate, /,, = 1, < 1,5 and absorption begins

> As DM number density falls, radiative transitions take over and the absorption signal vanishes



Dark matter creates distortions in the CMB

DM inelastic collisions
survive here
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A wide parameter space of our DM model is
consistent with the EDGES data
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> DM with a 100-200 GHz transition
frequency can produce signals with
strong amplitudes and narrow
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Global absorption feature is sensitive to dark

matter self-interactions
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The global signal shifts with the
shift in energy splitting
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Absorption line created by a dark matter halo

Optical depth :

Line of sight s=0 s ds
@

> Doppler line profile is decided by the halo
temperature

» Two extreme cases for DM self-interactions: Absorber

» Collisionless : Tex — TCMB

» Collisional : Tex — Thal()



self-interactions

> Amplitude of the line is
decided by /.,

> Width of the line is
decided by /. .,

» Collisional DM has
stronger absorption
compared to collisionless

DM
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Dark forest - absorption by multiple dark matter halos

many such dark matter '\,
halos on the way... /'\
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Absorption amplitude is sensitive to dark matter self-

Interactions

> Collisional DM has
stronger absorption
compared to
collisionless DM

> Number of halos
Intersected Iincreases
as we decrease the
minimum halo mass
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Line width i1s sensitive to the low mass end of the halo
mass function
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Detectability of
dark forest

» Spectroscopic experiments in
optical and radiowave band
can detect dark forest !

» 20-40 GHz band of VLA falls In
the EDGES forest band for a
quasar at redshift ~ 4
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Dark matter as a composite particle

> Dark matter is a heavy-light bound state
composed of two elementary particles (dark
quarks) of the dark sector

x*
> Dark quarks have +¢€ and —e¢ electric charge ‘ NANANNS
X —_—

» Strong interactions between dark quarks
make the dark matter stable

> The hyperfine splitting of the ground state
gets corrections from dark pions
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Dark forest iIs a more sensitive probe of composite
DM compared to direct detection searches

> Inelastic scattering:
Magnetic moment of DM
Interacts with the magnetic

field of electron causing y — y*
transition

> Elastic scattering:

Charge radius of dark matter i i ""0*5. 1100
interacts with the electric field 1077 %
of electron ]
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Direct detection and
CMB limits allow

m.<3MeV as a

X |
possible explanation
for EDGES
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Key points

> We propose unique experimental signatures for a class of composite DM models
having electromagnetic transitions: absorption lines in the spectrum of a
background source.

> Such absorption signatures can occur as global absorption feature in CMB which
can explain the anomalous signal measured by the EDGES collaboration.

> Such absorption signatures can also occur as a “dark forest” in the spectrum of a
quasar and reveal the history of dark matter substructures.

> One can already look for such signatures in the existing data!

> A large volume of parameter space exists where dark forest is a better probe of
composite dark matter than the current and planned direct detection experiments.
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A wide
parameter space

IS consistent
with EDGES data
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Spectral distortion limit from COBE constrains
the electromagnetic coupling of dark matter

. 1020F
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EDGES anomaly: absorption signature of
collisional dark matter in the CMB

» Mass m, : 10 MeV - 1 GeV _
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Spectral distortions

> Absorption of CMB by DM at redshifts 1020F
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EDGES anomaly: absorption signature of
dark matter in the CMB
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Global absorption feature gets contribution
from dark matter + bremsstrahlung

e Specific intensity into brightness temperature

AT, ) T de,
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Absorption of photons from a quasar by a halo

 Absorption is quantified in terms of optical depth

Line of sight

Absorber



Properties of the halo decide the shape of the absorption line
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Dark line - absorption by a single DM halo

* Stronger absorption in 2 =6
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Dark forest - absorption by multiple dark matter halos

many such dark matter '\,
halos on the way... /'\

 Probability of intersecting a halo = fraction of the total area occupied by the
halo

e Randomly sample halo masses

« Randomly impact parameter from uniform probability over the cross-
sectional area

Furlanetto & Loeb 2002, Xu et al. 2011



Probability of intersecting a halo
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Overlap between absorption lines
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Halo temperature (Ascasibar et al. 2004)
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Dark matter model

SU(N) SU(Z)? SU(2)1R? U1lp U(l)em
dD N 2 1 0 —I—E
% N ‘ 2 0 —€
D N 1 +1 +€
Qo N 1 —1 —€
Table 1: The dark quarks in Weyl representation and their charges under gauge and global

symmetries.

> Weakly coupled dark quarks in the UV

> At low energies, the theory is strongly coupled and is described In
terms of bound states

> Strong interactions generate the quark condensate which breaks the
flavour symmetry resulting in 3 dark pions

> Hyper-fine splitting gets correction from pions



Scaling the hydrogen atom parameters
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Bremsstrahlung decides the high redshift
shape of the absorption feature

» Prior to recombination, o0 e

bremsstrahlung is importantin _ oo

establishing a black body
spectrum at low frequencies
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Outline

e Basic ingredients for photon absorption by DM
A formalism for quantifying absorption by DM
 Dark forest in the quasar spectrum

 Global absorption feature in the CMB spectrum
* A proof of principle DM model

« EXisting constraints on DM model parameters



