The y-type polarised kinetic Sunyaev-Zeldovich effect -Pairwise & cross-pairwise estimator, E and B modes

- Aritra Kumar Gon
 - with **Rishi Khatri**
- Windows on the Universe **Quy Nhon, Vietnam**
 - August 2023

Electron peculiar velocities at second order generate polarisation in the CMB: The pkSZ effect

Post-reionisation, the ICM provides the highest optical depth to Thomson scattering.

Electron peculiar velocities at second order generate polarisation in the CMB: The pkSZ effect

Post-reionisation, the ICM provides the highest optical depth to Thomson scattering.

Clusters have peculiar velocities; CMB is not isotropic in electron's rest frame - In particular a quadrupole is present.

Electron peculiar velocities at second order generate polarisation in the CMB: The pkSZ effect

- Post-reionisation, the ICM provides the highest optical depth to Thomson scattering.
- Clusters have peculiar velocities; CMB is not isotropic in electron's rest frame - In particular a quadrupole is present.
- Thomson scattering of this CMB quadrupole by the free electrons produces polarisation.

Electron peculiar velocities at second order generate polarisation in the CMB: The pkSZ effect

- Post-reionisation, the ICM provides the highest optical depth to Thomson scattering.
- Clusters have peculiar velocities; CMB is not isotropic in electron's rest frame - In particular a quadrupole is present.
- Thomson scattering of this CMB quadrupole by the free electrons produces polarisation.

Scattered spectrum not only has a differential blackbody but also a y-type distortion.

$$\left(\frac{\delta I}{I}\right)\Big|_{\text{(quadrupolar)}} = 2\left(\mathbf{v}\cdot\hat{\mathbf{n}}'\right)^2 g(x) + \frac{1}{2}y(x)\left(\mathbf{v}\cdot\hat{\mathbf{n}}'\right)^2$$

 $y(x) = \frac{xe^{x}}{(e^{x} - 1)} \left(x\frac{e^{x} + 1}{e^{x} - 1} - 4 \right)$

$$x = \frac{h\nu}{k_B T_0}$$

Predicted by Sunyaev and Zeldovich in 1980.

Previous works: Renaux-Petel et al. 2013 Hotinli et al. 2022

A new pairwise-framework to detect the pkSZ effect

arXiv: 2308.01370

Polarisation direction is always perpendicular to the transverse velocity direction

***** The polarisation field : $(\mathcal{Q} \pm i\mathcal{U})(\hat{\mathbf{n}}) \equiv P_{\pm}(\hat{\mathbf{n}})$ $P_{+}(\hat{\mathbf{n}} \equiv \hat{\mathbf{z}}) = -\frac{1}{10} \tau_{\text{eff}} v_{t}^{2}(\mathbf{x}) e^{-2i\phi}$

 \mathcal{X}

Polarisation direction is always perpendicular to the transverse velocity direction

 ${\mathcal X}$

***** The polarisation field : $(\mathcal{Q} \pm i\mathcal{U})(\hat{\mathbf{n}}) \equiv P_{\pm}(\hat{\mathbf{n}})$ $P_{+}(\hat{\mathbf{n}} \equiv \hat{\mathbf{z}}) = -\frac{1}{10} \tau_{\text{eff}} v_{t}^{2}(\mathbf{x}) e^{-2i\phi}$

Clusters which are close to each other will have peculiar velocities ~ towards each other

* Averaging over many clusters which are at a fixed separation will generate a net non-zero polarisation signal.

Coherent addition of the Q parameter gives a net non-zero polarisation signal.

Theoretical formalism of the pairwise estimator

 $\hat{P}_{\text{pairwise}}(x) = \sum_{i} w_i (P_{i1+} + P_{i2+}) \Big|_{x}$

separation along x – axis

Theoretical formalism of the pairwise estimator

 $\langle \hat{P}_{\text{pairwise}}(x) \rangle \propto \langle (P_{i1+} + P_{i2+}) \rangle = P_{\text{pairwise}}(\mathbf{x}, \hat{\mathbf{n}}_{12} | m, \chi)$

Pairwise signal - dependent cosmological and astrophysical parameters

Thomson Optical depth $\langle \hat{P}_{\text{pairwise}}(x) \rangle \propto \langle (P_{i1+} + P_{i2+}) \rangle = P_{\text{pairwise}}(x, \hat{n}_{12} | m, \chi)$

 $\frac{q!}{(q-l)!!(q+l+1)!!} \begin{pmatrix} 1 & L_1 & l \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & L_2 & l \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L_1 & L_2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & L_2 & L_1 \\ l & 1 & 1 \end{pmatrix}$

 $\int dk_1 dk_2 k_1^2 k_2^2 G_q(k_1, k_2, b_1, b_2) j_{L_1}(k_1 x) j_{L_2}(k_2 x) P(k_1) P(k_2) \left[1 + \frac{D^2 b_1^2}{2\pi^2} \int dk \, k^2 j_0(k x) P(k) \right]^{-1}$

Linear matter power spectrum

$P_{\text{pairwise}}(\mathbf{x}, \hat{\mathbf{n}}_{12} | m, \chi) = A \left[(D^2 H f a)^2 \right](\chi) \tau_{\text{eff}}(m, \chi) \left[\frac{b_1(m, \chi) C_1(x) + b_2(m, \chi) C_2(x)}{1 + D^2(\chi) b_1^2(m, \chi) C_3(x)} \right] Y_{2-2}(\hat{\mathbf{x}}; \hat{\mathbf{n}}_{12})$

Denoting the orientation of the cluster pair wrt LOS

 $P_{\text{pairwise}}(\mathbf{x}, \hat{\mathbf{n}}_{12} | m, \chi) = A \left[(D^2 H f a)^2 \right](\chi) \tau_{\text{eff}}(m, \chi) \left[\frac{b_1(m, \chi) C_1(x) + b_2(m, \chi) C_2(x)}{1 + D^2(\chi) b_1^2(m, \chi) C_3(x)} \right] Y_{2-2}(\hat{\mathbf{x}}; \hat{\mathbf{n}}_{12})$

$Y_{2-2}(\hat{\mathbf{x}}; \hat{\mathbf{n}}_{12}) \propto \sin^2\theta \exp(-2i\phi)$

Denoting the orientation of the cluster pair wrt LOS

 $P_{\text{pairwise}}(\mathbf{x}, \hat{\mathbf{n}}_{12} | m, \chi) = A \left[(D^2 H f a)^2 \right](\chi) \tau_{\text{eff}}(m, \chi) \left[\frac{b_1(m, \chi) C_1(x) + b_2(m, \chi) C_2(x)}{1 + D^2(\chi) b_1^2(m, \chi) C_3(x)} \right]$

signal (μK)

 $Y_{2-2}(\hat{\mathbf{x}}; \hat{\mathbf{n}}_{12}) \propto \sin^2\theta \exp(-2i\phi)$

Smaller mass cluster have lower optical depth, thus lower polarisation signal.

x - axis

 $\hat{P}_{\text{pairwise}}(x) = \sum_{i} w_i (P_{i1+} + P_{i2+}) \Big|_{\text{separation along}} = \sum_{i} w_i P_{\text{pairwise}}(x | m_i, \chi_i, \theta_i)$

x - axis

Optimal estimator $= \frac{1}{\sum_{i} m_{i} \sin^{2} \theta_{i}} m_{i} \sin^{2} \theta_{i}$

 $\hat{P}_{\text{pairwise}}(x) = \sum w_i (P_{i1+} + P_{i2+})$

separation along x - axis

Signal to

 10^{-2}

 10^{-3}

Optimal estimator 10^{0} $\sum_{i} m_{i} \sin^{2} \theta_{i} \quad m_{i} \sin^{2} \theta_{i}$ Noise ratic 10^{-1}

Detecting all clusters with $\log_{10} \left(\frac{M_{\min}^{500c}}{M_{\odot}} \right) \ge 13.5$ will enable a detection of the pairwise pkSZ effect.

•	

In general, we can pair up a cluster with any other indicator of the large-scale gravitational potential around the cluster.

In general, we can pair up a cluster with any other indicator of the large-scale gravitational potential around the cluster.

Clusters being rare - noisy tracers, better to use galaxies.

In general, we can pair up a cluster with any other indicator of the large-scale gravitational potential around the cluster.

Clusters being rare - noisy tracers, better to use galaxies.

Polarisation signal from galaxies is negligible, but they are more numerous.

Beating the cosmic variance with pkSZ effect

Sensitive to the reionisation history - how fast reionisation happens.

* A way to beat the cosmic variance of primary CMB anisotropies. $(\mu K)^2$ $C_{\ell}/(2\pi)$ 10^{-6} 10^{-8} - $\ell(\ell+1)$ 10^{-12} .

arXiv: 2208.02270 JCAP10(2022)056

The pkSZ effect is sensitive to both optical depth and reionisation history

Varying width of reionisation

Varying central redshift of reionisation

Patchy reionisation creates small scale anisotropies

* Using 21cmFast, Healpix and PolSpice

Preliminary

Patchy reionisation enhances the power spectrum

Concluding Remarks

This polarisation signal with y-type distortion exists within the Standard Cosmological model of the Universe * The cross-pairing clusters from CMB-S4 with galaxies from large overlapping spectroscopic survey can provide a way to detect the signal. * Free from the cosmic variance of the primary CMB polarisation signal and lensing B modes. * Primary CMB anisotropies are sensitive to only the total reionisation optical depth but the pkSZ effect is sensitive to the Reionisation history.

Thank You