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I. Motivations

Cosmological principle: our universe is just simply homogeneous and isotropic
on large scales as described by the spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime:

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
,

a(t) is the scale factor and t is the cosmic time.

The cosmological principle has played as a basic assumption of all standard
inflationary models.

Confirming the validity of the cosmological principle is not straightforward.
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I. Motivations

Two CMB anomalous features, the hemispherical asymmetry and the Cold Spot, hinted by
Planck’s predecessor, NASA’s WMAP, are confirmed in the new high precision data from Planck,
both are not predicted by standard inflationary models which are basically based on the
cosmological principle (Source: ESA and the Planck Collaboration).

There have been a number of mechanisms proposed to explain the origin of these
anomalies. However, the physics behind the CMB anomalies have been still
unknown up to now Schwarz, Copi, Huterer, & Starkman, CQG33(2016)184001.
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I. Motivations
If the cosmological principle was broken down in the early universe, would it
still be unvalid in the late time universe ?
Cosmic no-hair conjecture claims the late time universe should simply be
homogeneous and isotropic, regardless of initial states, which might be
inhomogeneous or/and anisotropic (a.k.a. spatial hairs) Gibbons & Hawking,

PRD15(1977)2738; Hawking & Moss, PLB110(1982)35.
This conjecture was firstly proven by Wald, PRD28(1983)2118, for the Bianchi
spacetimes, which are homogeneous but anisotropic, using energy conditions
approach. Many follow-up papers have also been proposed but a complete
proof to this conjecture has remained unknown.

→ if the cosmic no-hair conjecture was valid then the late time universe
would obey the cosmological principle.

S. W. Hawking, G. W. Gibbons, and I. G. Moss (Source: Internet).
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I. Motivations
Recently, there have been some recent observational studies claiming that the
current universe might be anisotropic, in contrast to the prediction of the cosmic
no-hair conjecture !?
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II. KSW anisotropic inflation model

It seems to be the first valid counterexample to the cosmic no-hair conjecture
Kanno, Soda & Watanabe, PRL102(2009)191302, JCAP12(2010)024

SKSW =

∫
d4x
√
−g
[
R

2
− 1

2
∂µφ∂

µφ− V (φ)− 1

4
f 2 (φ)FµνF

µν

]
,

The last term is a supergravity-motivated one with Fµν ≡ ∂µAν − ∂νAµ the
field strength of the electromagnetic field Aµ.

The non-constant f (φ) breaks down the conformal invariance of Aµ → the
so-called conformal-violating Maxwell theory proposed to explain the origin of
primordial magnetic fields Ratra, AJ391(1992)L1 [c.f. Tina Kahniashvili’s talk].

Homogeneous but anisotropic Bianchi type I metric:

ds2 =− dt2 + exp [2α (t)− 4σ (t)] dx2 + exp [2α (t) + 2σ (t)]
(
dy2 + dz2

)
.

σ(t) a deviation from the isotropy determined by α(t), i.e., σ(t)� α(t).

Vector and scalar fields: Aµ = (0,Ax (t), 0, 0) and φ = φ (t).
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II. KSW anisotropic inflation model
This model admits stable and attractive Bianchi type I inflationary solutions
→ violates the Hawking cosmic no-hair conjecture

Attractor behavior of anisotropic fixed point, which is equivalent to anisotropic power-law
solution [taken from JCAP12(2010)024].

CMB imprints of the KSW model have been investigated by Soda and his
colleagues Watanabe, Kanno & Soda, MNRAS412(2011)L83; PTP123(2010)1041; Ohashi, Soda,

&Tsujikawa, JCAP12(2013)009 as well as by other people Dulaney & Gresham,

PRD81(2010)103532; Gumrukcuoglu, Himmetoglu, & Peloso, PRD81(2010)063528; Bartolo, Matarrese,

& Peloso, PRD87(2013)023504

CMB imprints of an extension of the KSW model, in which the inflaton is
complex, have also been investigated Chen, Emami, Firouzjahi, & Wang, JCAP08(2014)027
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III. Non-canonical extensions of the KSW model

A general action of non-canonical extensions of the KSW model:

S =

∫
d4x
√
−g
[
R

2
+ P(φ,X )− 1

4
f 2 (φ)FµνF

µν

]
,

where P(φ,X ) is an arbitrary function of scalar field φ and its kinetic
X ≡ −∂µφ∂µφ/2, which was firstly introduced in the so-called k-inflation
Armendariz-Picon, Damour, & Mukhanov, PLB458(1999)209.

A number of counterexamples have been found in non-canonical extensions of
the KSW models Do & Kao, PRD84(2011)123009; Ohashi, Soda & Tsujikawa,

PRD88(2013)103517; Do & Kao, CQG33(2016)085009; Do, EPJC81(2021)77.

→ CMB imprints of non-canonical anisotropic inflation ?
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III. CMB imprints: Background metric

Due the smallness of anisotropy deviation, we can take a good
approximation, in which the background metric is the spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric rather than the
Bianchi type I metric for simplicity, c.f. Watanabe, Kanno & Soda, MNRAS412(2011)L83;

Ohashi, Soda, &Tsujikawa, JCAP12(2013)009; Chen, Emami, Firouzjahi, & Wang, JCAP08(2014)027.

The non-vanishing vector field could, however, lead to some significant CMB
imprints → Let’s see how
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III. CMB imprints: Scalar perturbations

Since the statistical isotropy of CMB is broken, the scalar power spectrum is
modified as Ackerman, Carroll, & Wise, PRD75(2007)083502

Pζ(0)
k → Pζk,ani = Pζ(0)

k

(
1 + g∗ cos2 θ

)
.

I g∗ characterizes the deviation from the spatial isotropy, i.e., |g∗| < 1.
I θ is the angle between the comoving wave number k with the privileged

direction V close to the ecliptic poles.
I Pζ(0)

k , the isotropic scalar power spectrum (g∗ = 0), for non-canonical scalar
field is defined as Armendariz-Picon, Damour, & Mukhanov, PLB458(1999)219

Pζ(0)
k = Pζ(0)

k,nc =
1

8π2M2
p

H2

csε

∣∣∣∣
c∗s k∗=a∗H∗

where c2
s ≡ ∂Xp/∂Xρ ≤ 1 is the speed of sound of scalar perturbation and

ε ≡ −Ḣ/H2 � 1 is the slow-roll parameter.
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III. CMB imprints: Scalar perturbations

Observational constraints of g∗:
I g∗ = 0.29± 0.031 at 9σ using the 5-year WMAP data Groeneboom, Ackerman,

Wehus, & Eriksen, AJ722(2010)452.
I g∗ = 0.002± 0.016 at 68% CL using the Planck 2013 data Kim & Komatsu,

PRD88(2013)011301(R).
I |g∗| < 0.072 at 95% CL using the 9-year WMAP data Ramazanov & G. Rubtsov,

PRD89(2014)043517.
I −0.041 < g∗ < 0.036 at 95% CL using the Planck 2015 data Ramazanov,

Rubtsov, Thorsrud, & Urban, JCAP03(2017)039.
I −0.09 < g∗ < 0.08 at 95% CL using the LSS surveys data Sugiyama, Shiraishi, &

Okumura, MNRAS473(2018)2737.

Our goal: Calculate the corresponding g∗ for non-canonical anisotropic
inflation using the standard Bunch-Davies (BD) vacuum state for the
non-canonical scalar field Chen, Huang, Kachru, & Shiu, JCAP01(2007)002

ζ(0)
nc (k , η) =

H

2
√
csεMpk3/2

(1 + icskη) e−icskη.
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III. CMB imprints: Scalar perturbations

The full power spectrum in the Heisenberg interaction picture for the scalar
perturbation, up to the second order, is given by

〈0|ζ̂nc(k , η)ζ̂nc(k ′, η)|0〉

' 2π2

k3
δ3(k + k′)Pζ(0)

k,nc +
2π2

k3
δ3(k + k′)

c4
s E

2
xN

2
csk

π2ε2M4
p

sin2 θ,

with Ncsk ' 60 the e-fold number and Ex ≡ (f /a2)A
(0)′

x . This implies

I Pζk,nc = Pζ(0)
k,nc

(
1 +

8c5
s E

2
x N

2
cs k

εM2
pH

2 sin2 θ

)
' Pζ(0)

k,nc

(
1− 8c5

s E
2
x N

2
cs k

εM2
pH

2 cos2 θ

)
I g∗ = −c5

s
8E2

x N
2
cs k

εM2
pH

2 = c5
s g

0
∗< 0, where g 0

∗ = − 8E2
x N

2
cs k

εM2
pH

2 < 0 for canonical

anisotropic inflation → |g∗| � |g 0
∗ | if c2

s � 1.
I Scalar spectral index:

ns − 1 ≡
d lnPζ

k,nc

d ln k

∣∣∣∣
c∗s k∗=a∗H∗

' −2ε− η̃ − s +
(

2
Ncs k
− 5s

)
2g∗

3−2g∗
.
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III. CMB imprints: Tensor perturbations

The full tensor power spectrum for the non-canonical scalar field is given by

〈0|ĥij(k)ĥij(k′)|0〉 =
2π2

k3
δ3(k + k′)

(
Ph(0)
k,nc +

4E 2
xN

2
k

π2M4
p

sin2 θ

)
,

which implies Ph
k,nc ' P

h(0)
k,nc

(
1− εg0

∗
4 sin2 θ

)
→ similar to that of canonical

scalar field.

Here, Ph(0)
k,nc (k) = 2

π2
H2

M2
p

∣∣∣
k∗=a∗H∗

= 16csεPζ(0)
k,nc (k) is the isotropic tensor power

spectrum for non-canonical scalar field Armendariz-Picon, Damour, & Mukhanov,

PLB458(1999)219.

Tensor spectral index: nt ≡
d lnPh

k,nc

d ln k

∣∣∣∣
k∗=a∗H∗

' −2ε.
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III. CMB imprints: Tensor-to-scalar ratio

For non-canonical isotropic inflation: r isonc = 16csε Armendariz-Picon, Damour, &

Mukhanov, PLB458(1999)219.

The full tensor-to-scalar ratio for non-canonical anisotropic inflation:

rnc ≡
Ph
k,nc

Pζk,nc

= 16csε
1− 1

4εg
0
∗ sin2 θ

1− c5
s g

0
∗ sin2 θ

' 16csε
6− εg0

∗
6− 4c5

s g
0
∗
,

with the average value of sin2 θ as 〈sin2 θ〉 = 2/3 Ohashi, Soda, &Tsujikawa,

JCAP12(2013)009.
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III. CMB imprints: tensor-to-scalar ratio

Example: Anisotropic power-law k-inflation EPJC81(2021)77
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nS

r n
c

(Left) The ns − rnc diagram for the anisotropic power-law inflation with g0
∗ = −0.03 and

10−2 ≤ cs ≤ 10−1. Four red points have the corresponding values such as
(ns , rnc) ' (0.96, 0.022) for cs ' 0.07, (0.965, 0.018) for cs ' 0.066, (0.97, 0.014) for cs ' 0.06,
and (0.975, 0.011) for cs ' 0.056. (Right) The Planck observational data in comparison with the
prediction of tensor-to-scalar ratio of some leading inflationary models [taken from
A&A641(2020)A10].

16 / 22



III. CMB imprints: Correlations
The correlators of CMB observables take the following form Watanabe, Kanno &

Soda, MNRAS412(2011)L83; Chen, Emami, Firouzjahi, & Wang, JCAP08(2014)027

CX1X2

l1l2m1m2
≡ 〈aX1

l1m1
aX2∗
l2m2
〉

= 4π

∫
dk

k
∆i1X1

l1
(k)∆i2X2

l2
(k)

∫ [
i1Y
∗
l1m1

(θ, φ)i2Yl2m2 (θ, φ)
]
P i1,i2 (k, θ, φ)dΩ,

where ∆ is the transfer function, while X represents the temperature
anisotropy (Xi = T ), the E-mode (Xi = E ), or the B-mode (Xi = B). In
addition, iYlm(θ, φ) is the spin-i-weighted spherical harmonics.

The power spectra of helicity bases, P i1,i2 , are given by Watanabe, Kanno & Soda,

MNRAS412(2011)L83

I Scalar perturbations: P0,0 = Pζ .
I Cross-correlations: P0,±2 = P±2,0 = 1√

2
P0,+ ≡ 1√

2
Pζh+ .

I Tensor perturbations: P±2,±2 = 1
2

(
P++ + P××

)
= 1

2

(
Ph+ + Ph×

)
≡ Punp

h .
I Linear polarization: P±2,∓2 = 1

2

(
P++ − P××

)
= 1

2

(
Ph+ − Ph×

)
≡ Ppol

h .

Note: For isotropic inflation, P i1,i2 ∼ δi1i2 → Pζh+ = 0 and Ppol
h = 0.

→ The non-vanishing Pζh+ and Ppol
h should be a smoking gun for the

anisotropic inflation.
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III. CMB imprints: Numerical results

Choose g0
∗ = −0.03 < 0 according to the mentioned observational

constraints.

Choose rnc = 0.03 according to the joint analysis on primordial gravitational
waves of BICEP2 and Keck array using the Planck, WMAP, and new
BICEP2/Keck observations through the 2015 season, which provides the
upper bound r ≤ 0.07 at 95 % CL. [c.f. John Kovac’s talk, r > 0.003 at 5σ
@ CMB-S4].

Use the Cosmic Linear Anisotropy Solving System (CLASS) package
Lesgourgues, arXiv:1104.2932 with the latest observational data of Planck 2018 to
calculate the transfer function ∆.
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III. CMB imprints: Numerical results
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The magnitude of the TT spectra CTT
l,l+2,0,0 induced by the anisotropy in the scalar perturbations

(the upper blue dashed-solid curve); by the anisotropy in the tensor perturbations (the green
dotted-dashed curve); by the cross-correlations (the thicker red dotted-solid curve); and by the
linear polarization (the bottom purple dotted curve) are shown respectively. The left hand side
and right hand side figures correspond to cs = 1 and cs = 0.1, respectively.

The left figure implies that the TT spectrum associated with the scalar
perturbations dominates over the others for the canonical scalar field. However,
this will not be true for the non-canonical scalar field as shown in the right figure
since cs < 1.
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IIII. CMB imprints: Numerical results
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The magnitude of TB spectrum CTB
l,l+1,l,l (the middle blue dashed-solid curve) and the

magnitude of EB spectrum CEB
l,l+1,l,l (the bottom red dotted-solid curve), both induced by the

cross-correlations, are shown in comparison with the magnitude of the isotropic BB spectrum
CBB
l,l,0,0 (the upper purple dotted curve). The left hand side and right hand side figures

correspond to cs = 1 and cs = 0.1, respectively.
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IV. Conclusions

The validity of cosmological principle should be (re-)considered more
seriously due to the emergence of many exotic observations, which seem to
be beyond its predictions.

The cosmic no-hair conjecture is extensively violated in the KSW model as
well as in its non-canonical extensions.

The non-canonical extensions of KSW could provide a viable tensor-to-scalar
ratio, c.f., EPJC81(2021)77.

The TT spectra induced by the tensor perturbations as well as by the linear
polarization will increase when the speed of sound decreases.

The CMB imprints of anisotropic inflation might be detected by more
sensitive detectors built in the near future (expectation).
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Thank you all for your attention !
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