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|. Motivations

@ Cosmological principle: our universe is just simply homogeneous and isotropic
on large scales as described by the spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime:

ds? = —dt* + 2%(t) (dx® + dy? + dz?),

a(t) is the scale factor and t is the cosmic time.

@ The cosmological principle has played as a basic assumption of all standard
inflationary models.

@ Confirming the validity of the cosmological principle is not straightforward.

How Isotropic is the Universe?

Daniela Saadeh, Stephen M. Feeney, Andrew Pontzen, Hiranya V. Peiris, and Jason D. McEwen
Phys. Rev. Lett. 117, 131302 — Published 21 September 2016

-
PhySICS See Synopsis: Anisotropy Limits for the Universe
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|. Motivations

Two CMB anomalous features, the hemispherical asymmetry and the Cold Spot, hinted by
Planck’s predecessor, NASA's WMAP, are confirmed in the new high precision data from Planck,
both are not predicted by standard inflationary models which are basically based on the
cosmological principle (Source: ESA and the Planck Collaboration).

There have been a number of mechanisms proposed to explain the origin of these
anomalies. However, the physics behind the CMB anomalies have been still
unknown up to Nnow Schwarz, Copi, Huterer, & Starkman, CQG33(2016)184001.
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|. Motivations

If the cosmological principle was broken down in the early universe, would it
still be unvalid in the late time universe ?

Cosmic no-hair conjecture claims the late time universe should simply be
homogeneous and isotropic, regardless of initial states, which might be
inhomogeneous or/and anisotropic (a.k.a. spatial hairs) Gibbons & Hawking,
PRD15(1977)2738; Hawking & Moss, PLB110(1982)35.

This conjecture was firstly proven by Wald, PrD28(1983)2118, for the Bianchi
spacetimes, which are homogeneous but anisotropic, using energy conditions
approach. Many follow-up papers have also been proposed but a complete
proof to this conjecture has remained unknown.

— if the cosmic no-hair conjecture was valid then the late time universe
would obey the cosmological principle.
> i

e,

S. W. Hawking, G. W. Gibbons, and |. G. Moss (Source: Internet).
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|. Motivations

Recently, there have been some recent observational studies claiming that the
current universe might be anisotropic, in contrast to the prediction of the cosmic
no-hair conjecture 1?7

A&A 631,113 (2019)
Letter to the Editor

Evidence for anisotropy of cosmic acceleration’

Jacques Colin', Roya Mohayaee, (7 Mohamed Rameez? and (%) Subir Sarkar®

PAPER
Does Hubble tension signal a breakdown in FLRW cosmology?

C Krishnan' (), R Mohayaee?, E O Colgain®34 (), M M Sheikh-Jabbari® and L Yin®*
Published 23 August 2021 - © 2021 |OP Publishing Ltd

Classical and Quantum Gravity, Volume 38, Number 18

Hints of FLRW breakdown from supernovae

Chethan Krishnan, Roya Mohayaee, Eoin O Colgéin, M. M. Sheikh-Jabbari, and Lu Yin
Phys. Rev. D 105, 063514 — Published 11 March 2022

6/22



II. KSW anisotropic inflation model

@ It seems to be the first valid counterexample to the cosmic no-hair conjecture
Kanno, Soda & Watanabe, PRL102(2009)191302, JCAP12(2010)024

R 1 1
Scw= [ #/F |5~ 30—V~ 1 )R,

@ The last term is a supergravity-motivated one with F,, = 0,A, — 0,A,, the
field strength of the electromagnetic field A,,.

@ The non-constant f(¢) breaks down the conformal invariance of A, — the
so-called conformal-violating Maxwell theory proposed to explain the origin of
primordial magnetic fields Ratra, AJ391(1992)L1 [c.f. Tina Kahniashvili's talk].

@ Homogeneous but anisotropic Bianchi type | metric:
ds® = — dt® + exp [2a(t) — 4o (t)] dx® + exp [2c (t) + 20 (t)] (dy® + dz°) .
@ o(t) a deviation from the isotropy determined by a(t), i.e., o(t) < a(t).

@ Vector and scalar fields: A, = (0, A« (t),0,0) and ¢ = ¢ (t).
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II. KSW anisotropic inflation model

@ This model admits stable and attractive Bianchi type | inflationary solutions
— violates the Hawking cosmic no-hair conjecture

0 0.0004

X 0.0008 T o002 o1

Attractor behavior of anisotropic fixed point, which is equivalent to anisotropic power-law
solution [taken from JCAP12(2010)024].

o CMB imprints of the KSW model have been investigated by Soda and his
colleagues Watanabe, Kanno & Soda, MNRAS412(2011)L83; PTP123(2010)1041; Ohashi, Soda,
&Tsujikawa, JCAP12(2013)009 as well as by other people Dulaney & Gresham,
PRD81(2010)103532; Gumrukcuoglu, Himmetoglu, & Peloso, PRD81(2010)063528; Bartolo, Matarrese,
& Peloso, PRD87(2013)023504

o CMB imprints of an extension of the KSW model, in which the inflaton is
complex, have also been investigated Chen, Emami, Firouzjahi, & Wang, JCAP08(2014)027
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[11. Non-canonical extensions of the KSW model

@ A general action of non-canonical extensions of the KSW model:
4 R 1 2 v
S = dX\/_g §+P(¢7X)_Zf (¢)FMUFM 5

where P(¢, X) is an arbitrary function of scalar field ¢ and its kinetic
X = —0"$0,,¢/2, which was firstly introduced in the so-called k-inflation
Armendariz-Picon, Damour, & Mukhanov, PLB458(1999)209.

@ A number of counterexamples have been found in non-canonical extensions of
the KSW models Do & Kao, PRD84(2011)123009; Ohashi, Soda & Tsujikawa,
PRD88(2013)103517; Do & Kao, CQG33(2016)085009; Do, EPJC81(2021)77.

— CMB imprints of non-canonical anisotropic inflation ?
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[Il. CMB imprints: Background metric

@ Due the smallness of anisotropy deviation, we can take a good
approximation, in which the background metric is the spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric rather than the
Bianchi type | metric for simplicity, c.f. Watanabe, Kanno & Soda, MNRAS412(2011)L83;
Ohashi, Soda, &Tsujikawa, JCAP12(2013)009; Chen, Emami, Firouzjahi, & Wang, JCAP08(2014)027.

@ The non-vanishing vector field could, however, lead to some significant CMB
imprints — Let’s see how
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[Il. CMB imprints: Scalar perturbations

@ Since the statistical isotropy of CMB is broken, the scalar power spectrum is
modified as Ackerman, Carroll, & Wise, PRD75(2007)083502

PE(O) S ps = PE(O) (1 + g cos® 9) .

k,ani

> g. characterizes the deviation from the spatial isotropy, i.e., |g«| < 1.

> 0 is the angle between the comoving wave number k with the privileged
direction V close to the ecliptic poles.

> P,f(o), the isotropic scalar power spectrum (g = 0), for non-canonical scalar
field is defined as Armendariz-Picon, Damour, & Mukhanov, PLB458(1999)219

1 H?
PO _ pe® _

k,nc 2
n 8m2 M3 cse ko Hy
'S

where _c52 = Oxp/Oxp < 1is the speed of sound of scalar perturbation and
€ = —H/H? < 1 is the slow-roll parameter.

11/22



[Il. CMB imprints: Scalar perturbations

@ Observational constraints of g,:

> g« = 0.29 +0.031 at 90 using the 5-year WMAP data Groeneboom, Ackerman,
Wehus, & Eriksen, AJ722(2010)452.

» g. = 0.002 +0.016 at 68% CL using the Planck 2013 data Kim & Komatsu,
PRD88(2013)011301(R).

> |g.| < 0.072 at 95% CL using the 9-year WMAP data Ramazanov & G. Rubtsov,
PRD89(2014)043517.

» —0.041 < g« < 0.036 at 95% CL using the Planck 2015 data Ramazanov,
Rubtsov, Thorsrud, & Urban, JCAP03(2017)039.

» —0.09 < g < 0.08 at 95% CL using the LSS surveys data Sugiyama, Shiraishi, &
Okumura, MNRAS473(2018)2737.

@ Our goal: Calculate the corresponding g, for non-canonical anisotropic
inflation using the standard Bunch-Davies (BD) vacuum state for the
non-canonical scalar field Chen, Huang, Kachru, & Shiu, JCAP01(2007)002

© H

_ : —icsk
nc (kﬂ?) - 2@7/\/"7!(3/2 (1+ ICskT])e s,

12/22



[Il. CMB imprints: Scalar perturbations

@ The full power spectrum in the Heisenberg interaction picture for the scalar
perturbation, up to the second order, is given by

<0|€nc(k 1)Cnc(k',7)]0)

63(k+k )Pee

k,nc

2 2 EX c .
) + k—i(ﬂk oK) ek gip2 g,
<€

with N, ~ 60 the e-fold number and E, = (f/a ) . This implies

2 5202
¢ _ ¢ SEINZ, . 2 ¢(0) (4 BesEL NGk 2
> Pk nc Pk nc 1+ M2H 7 sin” 0 ~ P eMgst cos” 0
8EZNZ 8E2N?
> g.o=—c GMQHZ = c2g%< 0, where g% = — ,\jﬂﬁz < 0 for canonical

anisotropic |nf|at|on — g < g0 if & <« 1.
> Scalar spectral index:

¢
dinP

_ 1= " "kinc ~ D¢ — 75— 2 28

ns—1= —2 ~ —2¢ s+( 55)

3—2gy "
cFkx=axHx
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[1l. CMB imprints: Tensor perturbations

@ The full tensor power spectrum for the non-canonical scalar field is given by

~ ~ 272 4E2 N2
Ol 0hs()10) = 25 8%k + ) (P + 25 T s )
P

0
which implies ’Pf’nc ~ PO (1 — L= gin? 9) — similar to that of canonical

k,nc 4
scalar field.
h(0) )y — 2 H? _ ¢(0) : : :

o Here, P, (k) = =37 16c5€P; . (k) is the isotropic tensor power
spectrum for non-canonical scalar field Armendariz-Picon, Damour, & Mukhanov,
PLB458(1999)219.

. ) _ dinP}] .

@ Tensor spectral index: n; = — -7 ~ —2¢.

ky=a,H,
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[1l. CMB imprints: Tensor-to-scalar ratio

@ For non-canonical isotropic inflation: r/s°

Mukhanov, PLB458(1999)219.

= 16C5€ Armendariz-Picon, Damour, &

@ The full tensor-to-scalar ratio for non-canonical anisotropic inflation:

h .2

- Ploc L6 E1 — 2eglsin0 ~ 16c.c 6 — eg?

nc = = s T2, = )
E,nc 1—c5gPsin® 0 6 —4c2g?

with the average value of sin?# as (sin? ) = 2/3 Ohashi, Soda, & Tsujikawa,
JCAP12(2013)009.
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[1l. CMB imprints: tensor-to-scalar ratio

Example: Anisotropic power-law k-inflation EPJC81(2021)77
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(Left) The ns — mc diagram for the anisotropic power-law inflation with g% = —-0.03 and

1072 < ¢s < 107, Four red points have the corresponding values such as

(ns, mc) =~ (0.96,0.022) for cs ~ 0.07, (0.965,0.018) for ¢s ~ 0.066, (0.97,0.014) for cs ~ 0.06,
and (0.975,0.011) for ¢s ~ 0.056. (Right) The Planck observational data in comparison with the
prediction of tensor-to-scalar ratio of some leading inflationary models [taken from
A&A641(2020)A10].
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[1l. CMB imprints: Correlations
@ The correlators of CMB observables take the following form Watanabe, Kanno &
Soda, MNRAS412(2011)L83; Chen, Emami, Firouzjahi, & Wang, JCAP08(2014)027

X1X2 <aX1 Xz* >
hbmimy — \“hmy “hm;

= 47"/ Allxl ’zxz(k)/[ Yhm1(9 ¢) Y/2m2(9 qj))] Pil’iz(k797¢)dﬂ’

where A is the transfer function, while X represents the temperature
anisotropy (X; = T), the E-mode (X; = E), or the B-mode (X; = B). In
addition, ;Yin(0, ¢) is the spin-i- Welghted spherical harmonics.

@ The power spectra of helicity bases, P2, are given by Watanabe, Kanno & Soda,

MNRAS412(2011)L83
» Scalar perturbations: P%° = Pe.
. 0,42 £20 _ 1 p0+ — 1
» Cross-correlations: P>~ =P \/EP = \@Pcm
» Tensor perturbations: P¥2%2 = 1 (P 4 p>*) = 1 (Py, + Py ) = P;™.

> Linear polarization: P¥>¥2 =1 (pt+ _ p*>*) =1 (77;,+ Ph, ) = PP

@ Note: For isotropic inflation, Pt+2 ~ 0ii, = Pcn, =0 and PEOl =0.
— The non-vanishing P¢p, and Pp°| should be a smoking gun for the
anisotropic inflation.
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I1l. CMB imprints: Numerical results

@ Choose g’ = —0.03 < 0 according to the mentioned observational
constraints.

@ Choose r,. = 0.03 according to the joint analysis on primordial gravitational
waves of BICEP2 and Keck array using the Planck, WMAP, and new
BICEP2/Keck observations through the 2015 season, which provides the
upper bound r < 0.07 at 95 % CL. [c.f. John Kovac's talk, r > 0.003 at 50
@ CMB-S4].

@ Use the Cosmic Linear Anisotropy Solving System (CLASS) package
Lesgourgues, arXiv:1104.2932 with the latest observational data of Planck 2018 to
calculate the transfer function A.

CLASS

the Cosmic Linear Anisotropy Solving System
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I1l. CMB imprints: Numerical results
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The magnitude of the TT spectra CI,T112,0,0 induced by the anisotropy in the scalar perturbations
(the upper blue dashed-solid curve); by the anisotropy in the tensor perturbations (the green
dotted-dashed curve); by the cross-correlations (the thicker red dotted-solid curve); and by the
linear polarization (the bottom purple dotted curve) are shown respectively. The left hand side
and right hand side figures correspond to ¢s = 1 and ¢; = 0.1, respectively.

The left figure implies that the TT spectrum associated with the scalar
perturbations dominates over the others for the canonical scalar field. However,
this will not be true for the non-canonical scalar field as shown in the right figure
since ¢s < 1.
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[11l. CMB imprints: Numerical results
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The magnitude of TB spectrum Cl-,r/il,l,/ (the middle blue dashed-solid curve) and the
magnitude of EB spectrum C,,E,"il,,,, (the bottom red dotted-solid curve), both induced by the
cross-correlations, are shown in comparison with the magnitude of the isotropic BB spectrum
C,"?,‘?O,O (the upper purple dotted curve). The left hand side and right hand side figures
correspond to ¢s = 1 and ¢s = 0.1, respectively.

20/22



. Conclusions

The validity of cosmological principle should be (re-)considered more
seriously due to the emergence of many exotic observations, which seem to
be beyond its predictions.

The cosmic no-hair conjecture is extensively violated in the KSW model as
well as in its non-canonical extensions.

The non-canonical extensions of KSW could provide a viable tensor-to-scalar
ratio, c.f., EPJC81(2021)77.

The TT spectra induced by the tensor perturbations as well as by the linear
polarization will increase when the speed of sound decreases.

The CMB imprints of anisotropic inflation might be detected by more
sensitive detectors built in the near future (expectation).
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Thank you all for your attention !
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