DEMNUni : The imprint of massive neutrinos on the cross-correlation between cosmic voids and CMB lensing

Pauline Vielzeuf

Windows on the Universe **30th Anniversary of the Rencontres du Vietnam** ICISE, Quy Nhon (Vietnam), August 6 - 12, 2023

CENTRE DE PHYSIQUE DES Particules de Marseille

CPPM

• **DEMNUni**:

- The imprint of massive neutrinos
- on the cross-correlation between cosmic voids
- and CMB lensing

Pauline VIELZEUF

Rencontres du Vietnam

DEMNUni :

- The imprint of massive neutrinos
- on the cross-correlation between cosmic voids

and CMB lensing

Pauline VIELZEUF

Rencontres du Vietnam

DEMNUni: The imprint of massive neutrinos on the cross-correlation between cosmic voids and CMB lensing

arXiv:2303.10048

Pauline Vielzeuf^a Matteo Calabrese^b Carmelita Carbone^c Giulio Fabbian^{*d*,*e*} and Carlo Baccigalupi^{*f*,*g*,*h*}

August 6 -12, 2023 - ICISE - Quy Nhon, Vietnam

3

DEMNUni simulations

Carbone, 2016 (<u>1605.02024</u>)

14 cosmological simulations with volume: (2 Gpc/h)³, N_{part}: 2 x 2048³ (CDM+) **baseline Planck-13 cosmology**

Pauline VIELZEUF

Rencontres du Vietnam

At small scales, due to their non-zero velocity, massive neutrinos will travel across density fluctuations and thus smooth them.

Pauline VIELZEUF

Rencontres du Vietnam

August 6 -12, 2023 - ICISE - Quy Nhon, Vietnam

5

The Halo Mass function -> Consequence on the halo population

Pauline VIELZEUF

Rencontres du Vietnam

Pauline VIELZEUF

Rencontres du Vietnam

The Halo Mass function -> Consequence on the halo population

Massive neutrinos smooth the matter field decreasing thus the number of identified structures

> Higher the mass of Neutrinos, higher its effect will be

clusters

filaments

• <mark>voids</mark>

Size ~ tens of Mpc/h

At scales comparable to cosmic voids, massive neutrinos will fall in the potential wells.

filaments

voids

cosmic voids might be particularly affected by the presence of massive neutrino, due to the fact that the typical size of voids (10 to 100s of h-1Mpc)

The Void finder

Sánchez et al. (DES Collaboration), MNRAS 465, 746, 2017.

- Divide the sample in redshift slices. Here 100Mpc/h
- Compute the density field for each slice by counting the galaxy number in each pixel and smoothing the field with a Gaussian with a predefined smoothing scale.

• Save the void, erase it from the density map and iterate the process with the following underdense pixel.

0.8

Rencontres du Vietnam

smoothing scale	10 <i>h</i> ⁻¹ Mpc	20 <i>h</i> ⁻¹ Mpc	30 <i>h</i> ⁻¹ Mp
<i>n</i> _{ACDM}	144,594	68,221	30,05
$n_{\Lambda \text{CDM}+m_{\nu}}=0.16\text{eV}$	129,957	65,563	30,76
$n_{\Lambda \text{CDM}+m_{\nu}}=0.32\text{eV}$	114,046	61,945	30,98
$n_{\Lambda \text{CDM}+m_{\nu}}=0.53\text{eV}$	98,658	58,016	30,81

increase neutrino mass -> decrease number of voids increase smoothing scale -> decrease the difference

The Void finder

Sánchez et al. (DES Collaboration), MNRAS 465, 746, 2017.

- Divide the sample in redshift slices. Here 100Mpc/h
- Compute the density field for each slice by counting the galaxy number in each pixel and smoothing the field with a Gaussian with a predefined smoothing scale.

• Save the void, erase it from the density map and iterate the process with the following underdense pixel.

0.8

Rencontres du Vietnam

smoothing scale	10 <i>h</i> ⁻¹ Mpc	20 <i>h</i> ⁻¹ Mpc	30 <i>h</i> ⁻¹ Mp
<i>n</i> _{ACDM}	144,594	68,221	30,05
$n_{\Lambda \text{CDM}+m_{\nu}}=0.16\text{eV}$	129,957	65,563	30,76
$n_{\Lambda \text{CDM}+m_{\nu}}=0.32\text{eV}$	114,046	61,945	30,98
$n_{\Lambda \text{CDM}+m_{\nu}}=0.53\text{eV}$	98,658	58,016	30,81

increase neutrino mass -> decrease number of voids increase smoothing scale -> decrease the difference

Void density profile

deeper than in the massless case

Pauline VIELZEUF

Void density profile

deeper than in the massless case

Pauline VIELZEUF

Pauline VIELZEUF

Rencontres du Vietnam

<u>methodology</u>

Pauline VIELZEUF

Rencontres du Vietnam

methodology

- structure.

5 times the structure radius

Pauline VIELZEUF

Rencontres du Vietnam

• Cutting out patches of the CMB map centered at superstructure position using healpix (Górski et al., 2005). • Re-scaling the patches given the angular size of the

methodology

- structure.

Grannett et al., 2008

5 times the structure radius

Pauline VIELZEUF

Rencontres du Vietnam

• Cutting out patches of the CMB map centered at superstructure position using healpix (Górski et al., 2005). • Re-scaling the patches given the angular size of the

• Stacking all patches and measuring the average signal in different concentric radius bins around the center.

August 6 -12, 2023 - ICISE - Quy Nhon, Vietnam

Kovacs (2022)

State of the art and motivations

DESI

DESI Legacy Survey analysis https://arxiv.org/abs/2105.11936

Pauline VIELZEUF

Rencontres du Vietnam

Summary : consistency parameter

Correlation signal in DEMNUni

The increase in the smoothing scale in the void finder results in a boost of the intensity of the correlation signal

Correlation signal in DEMNUni

The increase in the smoothing scale in the void finder results in a boost of the intensity of the correlation signal

sensitivity parameter

$$\delta \kappa_{in} = \frac{\sum_{0}^{r < R_{\nu}/2} \kappa_{m_{\nu} = 0.16 \text{eV}, 0.32 \text{eV}, 0}}{\sum_{0}^{r < R_{\nu}/2} \kappa_{m_{\nu} = 0}}$$

Pauline VIELZEUF

Rencontres du Vietnam

August 6 -12, 2023 - ICISE - Quy Nhon, Vietnam

Pauline VIELZEUF

Rencontres du Vietnam

August 6 -12, 2023 - ICISE - Quy Nhon, Vietnam

Conclusions

Cosmic voids are promising tool for cosmology and massive neutrino cosmology, in particular using their correlation signal with CMB maps

We note that the presence of massive neutrinos in our simulation tends to decrease the void-CMB lensing signal, and this effect is more enhanced as one increases neutrino mass, and for larger smoothing scales in the void identification process. This suggest that more the neutrinos are massive, less empty will be the voids (lower de-lensing signal implying more matter inside the voids).

The measure of the reduction in the lensing signal inside cosmic voids due to the presence of massive neutrinos is in particular interesting as it is consistent with the tensions in the same lensing signal with massless neutrinos and ACDM simulation

The presence of massive neutrinos will depend on the scales and redshift considered

Pauline VIELZEUF

Rencontres du Vietnam

August 6 -12, 2023 - ICISE - Quy Nhon, Vietnam

17

Pauline VIELZEUF

Rencontres du Vietnam

Thank you!

