

Higgs cross-sections and properties (mass & width) Kun Liu

on behalf of the ATLAS and CMS Collaborations

Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University

30th Anniversary of the Recontres du Vietnam, 2023.8.7

- Brief overview of the Higgs boson discoveries at the LHC
- The Higgs boson mass and width measurements
- Higgs inclusive cross-section measurement
- Higgs Simplified Template Cross Section measurement
- Higgs differential cross sections measurement
- Searching for Higgs rare decay channels

- including updates in the last one year -

The Higgs boson discoveries at the LHC (2012-2023)

The Higgs boson discoveries at the LHC (2012-2023)

ATLAS and CMS Run 2 datasets (2015 - 2018)

• ~140 fb⁻¹ datasets have been collected at $\sqrt{s} = 13$ TeV in full Run 2 period

→ Thanks to the CERN accelerator and technical teams for excellent LHC performance!

TSUNG-DAO LEE INSTITUTE

ATLAS and CMS Run 3 datasets (2022 - now)

• The Large Hadron Collider machine is running at record energy 13.6 TeV!

 42 fb⁻¹ and 31.4 fb⁻¹ datasets have been collected in 2022 and 2023 (til July 21) with average mean number of interactions per crossing being 46 and 52.

TSUNG-DAO LEE INSTITUTE

Higgs cross section measurement vs pp collision energy New!

TSUNG-DAO LEE INSTITUTE

The Higgs boson mass measurement at 0.09% precision

- CMS combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels using 35.9 fb⁻¹ Run 2 + Run 1 dataset: 125.38 ± 0.11 (stat.) ± 0.08 (syst.) GeV
- ATLAS $H \rightarrow \gamma \gamma$ 139 fb⁻¹ Run 2+Run 1 dataset: 125.11 ± 0.09 (stat.) ± 0.06(syst.) GeV

The Higgs boson width measurement

Nat. Phy. 18 (2022) 1329

 Indirect measurement from off-shell production in the $H \rightarrow ZZ \rightarrow 4\ell / 2\ell 2\nu$ channels • CMS, ATLAS observed $\Gamma_H = 3.2^{+2.4}_{-1.7}, 4.5^{+3.3}_{-2.5}$ MeV No off-shell scenario 2In(\lambda) ²⁰ ATLAS Obs-Stat. only - Obs-Sys 18⁻₋On + Off-shell combined is excluded at 3.6 Exp-Stat. only Exp-Sys **16**^L 13 TeV, 139 fb⁻¹ standard deviations. $14 = 0bs-Stat. only: 1.1^{+0.6}_{-0.6}$ Exp-Stat. only: 1.0^{+0.8} Exp-Sys: 1.0^{+0.9} 12 Observed (expected) ${}^{10} = \Gamma_H / \Gamma_H^{SM} = 1.1^{+0.7}_{-0.6}$ upper limit on Γ_H at 95%C.L. is 10.5 (10.9). 2σ $\begin{array}{c} \begin{array}{c} 1\sigma \\ \hline 1\sigma \\ \hline 3.5 \\ \Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM} \end{array} \end{array} \begin{array}{c} \sigma^{on-shell}_{gg \rightarrow H \rightarrow ZZ^{*}} \sim \frac{g^{2}_{ggH}g^{2}_{HZZ}}{m_{H}\Gamma_{H}} \\ \\ \sigma^{off-shell}_{gg \rightarrow H^{*} \rightarrow ZZ} \sim \frac{g^{2}_{ggH}g^{2}_{HZZ}}{(2m_{Z})^{2}} \end{array} \end{array}$ 2

Submitted to PLB (arXiv.2304.01532)

1.5

2

2.5

3

0.5

The Higgs boson production cross section measurement

- Inclusive Higgs production cross section (signal strength μ) at 13 TeV in Run 2:
 - ATLAS result with 139 fb⁻¹
 - $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.)
 - CMS result with 138 fb⁻¹

 $\mu = 1.002 \pm 0.057 = 1.002 \pm 0.029$ (stat.) ± 0.033 (exp.) ± 0.036 (sig. th.)

The Higgs boson production and decay measurement

Cross section measurements vs Higgs production channel and decay mode

The Higgs boson simplified template cross section

• Motivation of doing Simplified Template X-Section measurement (STXS):

- Sensitive to deviations from the SM expectation
- Minimize model-dependent extrapolations
- Avoidance of large theory uncertainties in the corresponding SM predictions

The Higgs boson simplified template cross section

Submitted to PRD (arXiv.2207.00338)

TSUNG-DAO LEE INSTITUTE

以天之语 解物之道

CMS-PAS-HIG-20-001

The Higgs boson differential cross section measurement

• Differential $pp \rightarrow H + X$ cross-sections measurement in $H \rightarrow \gamma\gamma, ZZ^* \rightarrow 4\ell$ channels

The Higgs boson differential cross section measurement

• Differential $pp \rightarrow H + X$ cross-sections measurement in $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ channel

Evidence of the Higgs boson to Z and photon decay mode

- Combination of ATLAS and CMS Run 2 dataset \rightarrow 3.4 σ significance!
- The measured signal strength $\mu = 2.2 \pm 0.7$, agrees with the SM within 1.9 σ .

Searching for Higgs decay to a pair of charm-quarks

- CMS VH($\rightarrow c\bar{c}$) channel observed (expected) limit is 14.4 (7.60) times the SM prediction.
- ATLAS VH($\rightarrow b\bar{b}, c\bar{c}$) constrains $|\kappa_c/\kappa_b| < 4.5$ at 95% C.L. \rightarrow comparing to the ratio of bquark and c-quark masses ($m_b/m_c = 4.578 \pm 0.008$, Phys. Rev. D 98, 054517).

解物之道

17

Searching for Higgs decay to a pair of electrons

The observed upper limit on the H → e⁺e⁻ branching ratio is 3.0x10⁻⁴ (3.0x10⁻⁴ expected) at the 95% confidence level → statistical uncertainty dominated!

TSUNG-DAO LEE INSTITUTE

Searching for the Higgs boson to invisible decay mode

- The observed (expected) upper limit on the H \rightarrow invisible BR is 0.107 (0.077) at 95% C.L.
- Competitive limits for low-mass dark matter candidates in model-specific scenarios.

- The major Higgs production and decay channels have been observed at the LHC
 - ggF, VBF, WH, ZH, ttH+tH; H \rightarrow bb, WW, $\tau\tau$, ZZ, $\gamma\gamma$; evidence for H \rightarrow Z γ , H \rightarrow µµ
- The Higgs boson mass has been measured at 0.09% precision
 - ATLAS latest measurement: $125.11 \pm 0.09(syst.) \pm 0.06(stat.) GeV$
 - CMS latest measurement: $125.38 \pm 0.11(syst.) \pm 0.08(stat.) GeV$
- The Higgs boson width has been measured by CMS, ATLAS: $\Gamma_H = 3.2^{+2.4}_{-1.7}, 4.5^{+3.3}_{-2.5} MeV$
- Higgs inclusive production cross section has been measured at 6% precision
- Higgs differential cross sections have been measured with good precision
- Searching for Higgs rare productions have been performed
 - Constraints on Higgs to a pair of charm-quarks and a pair of electrons branching ratios