Higgs Theory or Cracking the Code of the Universe with the Higgs boson

M. Mühlleitner (KIT) 30th Anniversary of the Recontres du Vietnam Windows on the Universe ICISE, Quy Nhon, 6-12 Aug 2023

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Outline s O O z MH126GEV 01 Valide du 04/07/2012 ац 31/12/хххх Higgs S. Boson + Introduction Potential Parameters - Higgs Masses - Higgs Self-Couplings More on Precision: BSM Decays + Higgs Pair Production - Precision - Phenomenology + HH and Baryogenesis

+ Conclusions

Outline

Disclaimer 1: Not covered Higgs production cross sections, Dark Matter

+ Introduction

- Potential Parameters
 - Higgs Masses
 - Higgs Self-Couplings

More on Precision: BSM Decays

- + Higgs Pair Production
 - Precision
 - Phenomenology
- + HH and Baryogenesis
- + Conclusions

Disclaimer 2: Focus on Beyond-Standard-Model Theories & Phenomenology

The Standard Model is Structurally Complete

The Standard Model is Structurally Complete - But

Status

+ Experimental reality: No Beyond the Standard Model Physics discovered so far! Guido Altarelli, 16/1/12, KIT: "The situation is depressing, but not desperate."

+ Corner new physics:

Combination of all available information from different sectors and experiments: Higgs physics, Dark Matter searches, baryogenesis, astrophysics, cosmology, ...

Experiment: Precision analyses - new analysis techniques, ML, ...

Theory: Precision predictions for observables for SM, BSM (specific models, EFT)

+ Present Accuracy:

[ATLAS,CMS]

M_H = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV

- + Why precision?
- * Self-consistency test of SM at quantum level
 (e.g.: Higgs loop corrections to W boson mass)
- $* MH \leftrightarrow stability of the electroweak vacuum$

[Degrassi eal;Bednyakov eal]

- * Higgs mass uncertainty feeds back in uncertainty on Higgs observables
- ★ Test parameter relations in beyond-SM theories
 ⇒ indirect constraint of viable BSM parameter space!

+ Present Accuracy:

[ATLAS,CMS]

M_H = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV

- + Why precision?
- * Self-consistency test of SM at quantum level
 (e.g.: Higgs loop corrections to W boson mass)
- $* M_H \leftrightarrow stability of the electroweak vacuum$

[Degrassi eal;Bednyakov eal]

* Higgs mass uncertainty feeds back in uncertainty on Higgs observables

* Test parameter relations in beyond-SM theories

⇒ indirect constraint of viable BSM parameter space!

Supersymmetry

- + Supersymmetry:
 - enlarged particle spectrum: each SM particle has SUSY partner
 - enlarged Higgs sector: requires at least 2 complex Higgs doublets

* Minimal Supersymmetric extension (MSSM): 2 complex Higgs doublets

5 Higgs bosons:	h, H, A, H+, H–
4 neutralinos:	$ ilde{\chi}_{i}^{0} \; (i = 1,, 4)$

- + Next-to-MSSM (NMSSM): 2 complex Higgs doublets plus complex singlet field
 - enlarged Higgs and neutralino sector

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

- solves mu problem, interesting phenomenology

Higgs boson mass:

- * SM: fundamental parameter, not predicted by the theory
- * Supersymmetry: calculable from input parameters; quantum corrections Δm^2_H are important!

NMSSM:

* less important loop corrections needed compared to the MSSM

Status MSSM spectrum calculations:

FO: up to 2-loop in on-shell (OS) and DR scheme, partial 3-loop in DR scheme EFT: up to N³LL

Status NMSSM spectrum calculations: up to 2-loop in mixed OS-DR scheme and in DR-scheme

$\mathcal{O}(\alpha_{\text{new}}^2) = \mathcal{O}((\alpha_{\lambda} + \alpha_{\kappa} + \alpha_{\dagger})^2)$ Mass Corrections in the CP-Violating NMSSM

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao,Gabelmann,MM,Rzehak,'21]

$\mathcal{O}(\alpha_{\text{new}}^2) = \mathcal{O}((\alpha_{\lambda} + \alpha_{\kappa} + \alpha_{\dagger})^2)$ Mass Corrections in the CP-Violating NMSSM

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao, Gabelmann, MM, Rzehak, '21]

compatible w/ HiggsSignals after including the new correction

$\mathcal{O}(\alpha_{\text{new}}^2) = \mathcal{O}((\alpha_{\lambda} + \alpha_{\kappa} + \alpha_{\dagger})^2)$ Mass Corrections in the CP-Violating NMSSM

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Dao,Gabelmann,MM,Rzehak,'21]

Loop Corrected Trilinear Higgs Self-Couplings at $\mathcal{O}(\alpha_{+}(\alpha_{s+}\alpha_{+}))$

- + Masses $M_{ij}=(\partial^2 V_H/\phi_i \phi_j)|_{\phi=0}$ and Higgs self-couplings $\lambda_{ijk}=(\partial^3 V_H/\phi_i \phi_j \phi_k)|_{\phi=0}$ related through Higgs potential V_H => catch up in precision w/ masses
- Very sensitive to physics beyond the SM (BSM) important input for di-Higgs production important input for Higgs-to-Higgs decays important input for electroweak phase transitions
- Available in NMSSM:
 full 1-loop [Dao,MM,Streicher,Walz,'13]
 - 2-loop $\mathcal{O}(\alpha_{\dagger}\alpha_{s})$ [Dao,MM,Ziesche,'15]
 - 2-loop $\mathcal{O}(\alpha_{t}(\alpha_{t}+\alpha_{s}))$ [Borschensky, Dao, Gabelmann, MM, Rzehak, '22]

Corrections to h_u -like Higgs (\triangleq SM-like Higgs)

[Borschensky,Dao,Gabelmann,MM,Rzehak,'22]

$$\begin{split} \hat{\lambda}_{abc}^{\text{eff}} &: \text{renormalized loop-corrected Higgs self-coupling at vanishing external momentum} \\ \text{Theoretical uncertainty via renormalization scheme variation:} \quad \Delta_{\text{ren}} &= \frac{\left|\lambda^{m_t(\overline{\text{DR}})} - \lambda^{m_t(\text{OS})}\right|}{\lambda^{m_t(\overline{\text{DR}})}} \\ \text{Results comply w/ SM value} \quad \lambda_{HHH}^{\text{SM}} &= \frac{3M_H^2}{v} = 191 \text{ GeV} \quad \text{within theoretical uncertainty} \end{split}$$

[Taken from talk by M. Spira]

Partial Width	QCD	Electroweak	Total	on-shell Higgs
$H ightarrow b\overline{b}/c\overline{c}$	$\sim 0.2\%$	$\sim 0.5\%$	$\sim 0.5\%$	NNNNLO / NLO
$H ightarrow au^+ au^- / \mu^+ \mu^-$		$\sim 0.5\%$	$\sim 0.5\%$	NLO
H ightarrow gg	\sim 3%	$\sim 1\%$	$\sim 3\%$	NNNLO approx. / NLO
$H ightarrow \gamma \gamma$	< 1%	< 1%	$\sim 1\%$	NLO / NLO
$H \to Z\gamma$	< 1%	\sim 5%	$\sim 5\%$	(N)LO / LO
H ightarrow WW/ZZ ightarrow 4f	< 0.5%	$\sim 0.5\%$	$\sim 0.5\%$	(N)NLO

Impact of EW corrections on SM Higgs branching ratios $\Delta BR = \frac{BR^{QCD \& EW} - BR^{QCD}}{BR^{QCD}}$										[HDECAY]
ΔBF	$b\overline{b}$	$\tau^+\tau^-$	$\mu^+\mu^-$	$s\bar{s}$	$c\bar{c}$	gg	$\gamma\gamma$	$Z\gamma$	W^+W^-	ZZ
	-1.76%	-1.59%	-3.52%	2.24%	-3.81%	4.34%	-2.29%	-0.71%	3.68%	1.61%

Standard Model Branching Ratios

- Total uncertainties: parametric & theory uncertainties added linearly
- Refinements of input parameters, full NLO EW corrs. to H->ff, NLO quark-mass effects in H->gg

Higher-Order Impact in Beyond-SM Theories (BSM)

Impact of EW corrections on SM Higgs branching ratios $\Delta BR = \frac{BR^{QCD\&EW} - BR^{QCD}}{BR^{QCD}}$								[HDECAY]			
[$\Delta \mathrm{BR}$	$b\overline{b}$	$\tau^+ \tau^-$	$\mu^+\mu^-$	$sar{s}$	$car{c}$	<i>gg</i>	$\gamma\gamma$	$Z\gamma$	W^+W^-	ZZ
		-1.76%	-1.59%	-3.52%	2.24%	-3.81%	4.34%	-2.29%	-0.71%	3.68%	1.61%

Example: Impact of EW corrections on branching ratios of SM-like 2HDM Higgs boson

Type	$\Delta { m BR}^{m{S_1}}_{hbar{b}}$	$\Delta { m BR}^{m{S_2}}_{hbar{b}}$	$\Delta { m BR}^{m{S_3}}_{hbar{b}}$	$\Delta { m BR}^{{f OS2}}_{hbar b}$	$\Delta { m BR}_{hbar{b}}^{\overline{ m MS}}$
I	$\lesssim 2.5 \% (96 \%)$	$\lesssim 5.0\%(98\%)$	$\lesssim 2.5\%(90\%)$	$\lesssim 2.5 \% (94 \%)$	$\lesssim 10.0\%~(50\%)$
	$\lesssim 5.0 \% (100 \%)$	$\lesssim 7.5\%(99\%)$	$\lesssim 5.0\%~(99\%)$	$\lesssim 5.0 \% (99 \%)$	$\gtrsim 100.0\%~(12\%)$
II	$\lesssim 2.5 \% (99 \%)$	$1 \lesssim 2.5 \% (54 \%)$	$\lesssim 2.5 \% (98 \%)$	$\lesssim 2.5 \% \; (81 \%)$	$\sim 10^{-1} \le 10$
	$\lesssim 5.0 \% (100 \%)$	$\lesssim 7.5\%~(96\%)$	$\lesssim 5.0\%~(99\%)$	$\lesssim 5.0\%$ (99%)	$\gtrsim 100.0\%~(36\%)$
	$\lesssim 2.5\%(96\%)$	$\lesssim 2.5 \% (54 \%)$	$\lesssim 2.5\%(75\%)$	$\lesssim 2.5 \% (94 \%)$	$ \lesssim 17.5 \% (50 \%) $
	$\lesssim 5.0\%~(99\%)$	$\lesssim 5.0\%\;(97\%)$	$\lesssim 5.0\%~(99\%)$	$\lesssim 5.0\%~(99\%)$	$\gtrsim 100.0\%~(14\%)$
FL FL	$5 \approx 2.5 \ \overline{\%} \ (96 \ \overline{\%})^{-1}$	$\frac{1}{2.5\%}$ (54%)	$\sim 2.5 \% (75 \%)$	$ = 2.5 \overline{\%} \overline{(94 \%)} $	$ \lesssim 17.5 \% (50 \%) $
	$\lesssim 5.0\%~(99\%)$	$\lesssim 5.0\%(97\%)$	$\lesssim 5.0\%~(99\%)$	$\lesssim 5.0\%$ (99 %)	$\gtrsim 100.0\%~(12\%)$
Type	$\Delta \mathrm{BR}_{h\gamma\gamma/hZZ}^{\boldsymbol{S_1}}$	$\Delta \mathrm{BR}_{h\gamma\gamma/hZZ}^{\boldsymbol{S_2}}$	$\Delta \mathrm{BR}^{S_3}_{h\gamma\gamma/hZZ}$	$\Delta \mathrm{BR}^{\mathbf{OS2}}_{h\gamma\gamma/hZZ}$	$\Delta { m BR}_{h\gamma\gamma/hZZ}^{\overline{ m MS}}$
Ι	$\lesssim 5.0\% (97\%)$	$\lesssim 5.0\%~(90\%)$	$\lesssim 5.0~\%~(90~\%)$	$\lesssim 5.0\%$ (94%)	$\lesssim 20.0\%~(50\%)$
	$\lesssim 7.5 \% (99 \%)$	$\lesssim 10.0\%~(98\%)$	$\lesssim 7.5\%~(99\%)$	$\lesssim 7.5 \% (99 \%)$	$\gtrsim 100.0\%(21\%)$
II	$\lesssim 5.0 \% (99 \%)$	$\frac{1}{500} \lesssim \overline{5.0\%} (\overline{60\%})$	$\sim 2.5 \% (96 \%)$	$\lesssim 5.0 \% (82 \%)$	$ = \frac{1}{5} = 62.0 \ \% \ (50 \ \%) $
	$\lesssim 7.5 \% (99 \%)$	$\lesssim 12.5\%~(96\%)$	$\lesssim 5.0\%~(99\%)$	$\lesssim 7.5 \% (97 \%)$	$\gtrsim 100.0 \% (47 \%)$
	5.0% (97%)	$1 \lesssim 5.0\% (75\%)$	$\lesssim 2.5 \% (88 \%)$	$\lesssim 5.0 \ \% \ (95 \ \%)$	$ \lesssim 12.5 \% (50 \%) $
	$\lesssim 7.5\%~(99\%)$	$\lesssim 10.0\%~(99\%)$	$\lesssim 5.0\%~(99\%)$	$\lesssim 7.5\%~(99\%)$	$\gtrsim 100.0\%~(13\%)$
FL FL	5.0% (97%)	$\frac{1}{500} \approx \frac{1}{500} = \frac{1}$	$\sim 2.5\%(88\%)$	$ \le 5.0 \ \% \ (95 \ \%)^{-1} $	$ \lesssim 15.0 \% (50 \%) $
	$\lesssim 7.5\%~(99\%)$	$\lesssim 10.0\%~(99\%)$	$\lesssim 5.0\%~(99\%)$	$\lesssim 7.5\%~(99\%)$	$\gtrsim 100.0\%~(11\%)$
Type	$\Delta \mathrm{BR}^{m{S_1}}_{h au^+ au^-}$	$\Delta \mathrm{BR}^{m{S_2}}_{h au^+ au^-}$	$\Delta { m BR}^{m{S_3}}_{h au^+ au^-}$	$\Delta { m BR}^{{f OS2}}_{h au^+ au^-}$	$\Delta \mathrm{BR}_{h au^+ au^-}^{\overline{\mathrm{MS}}}$
Ι	$\lesssim 2.5 \% (98 \%)$	$\lesssim 2.5\%~(88\%)$	$\lesssim 2.5\%(97\%)$	$\lesssim 2.5\%$ (98%)	$\lesssim 7.5\%~(50\%)$
	< 5.0% (00%)	< 5.0% (00%)	< 5.0% (00%)	< 5.0 % (99.%)	<u>- > 100 0 %(19 %)</u>

[Krause,MM,'19]

Higher-Order Impact in Beyond-SM Theories (BSM)

Impact of EW corrections on SM Higgs branching ratios $\Delta BR = \frac{BR^{QCD\&EW} - BR^{QCD}}{BR^{QCD}}$								[HDECAY]			
[$\Delta \mathrm{BR}$	$b\overline{b}$	$\tau^+ \tau^-$	$\mu^+\mu^-$	$sar{s}$	$car{c}$	<i>gg</i>	$\gamma\gamma$	$Z\gamma$	W^+W^-	ZZ
		-1.76%	-1.59%	-3.52%	2.24%	-3.81%	4.34%	-2.29%	-0.71%	3.68%	1.61%

Example: Impact of EW corrections on branching ratios of non-SM-like 2HDM Higgs boson

Type	$\Delta \mathrm{BR}^{\boldsymbol{S_1}}_{H au^+ au^-}$	$\Delta \mathrm{BR}^{\boldsymbol{S_2}}_{H\tau^+\tau^-}$	$\Delta \mathrm{BR}^{\boldsymbol{S_3}}_{H au^+ au^-}$	$\Delta \mathrm{BR}^{\boldsymbol{S_4}}_{H au^+ au^-}$	$\Delta \mathrm{BR}^{\overline{\mathrm{MS}}}_{H au^+ au^-}$
Ι	$\lesssim 15.0 \% \; (49 \%)$	$\lesssim 15.0\%~(51\%)$	$\lesssim 15.0\%~(48\%)$	$\lesssim 15.0 \% \ (55 \%)$	$\lesssim 60.0\%~(50\%)$
	$\lesssim 35.0\%~(88\%)$	$\lesssim 35.0\%(88\%)$	$\lesssim 35.0\%~(77\%)$	$\lesssim 35.0 \% \ (88 \%)$	$\gtrsim 100.0\%~(40\%)$
II	$\lesssim 15.0\% (54\%)$	$\sim 20.0 \ \% \ (53 \ \%)$	$\lesssim 10.0\% (51\%)$	$\lesssim 25.0\% (47\%)$	$\sim 10^{-1} \lesssim 10^{-1} \times 10$
	$\lesssim 25.0\%~(91\%)$	$\lesssim 30.0\%~(90\%)$	$\lesssim 35.0\%~(90\%)$	$\lesssim 40.0\%$ (86%)	$\gtrsim 100.0\%~(84\%)$
	$\lesssim 15.0\% (54\%)$	$\lesssim 17.5 \% (48 \%)$	$\lesssim 7.5\%$ (46%)	$\lesssim 25.0\% (46\%)$	$ \lesssim 77.5\% (15\%) $
	$\lesssim 27.5\%(90\%)$	$\lesssim 30.0\%(88\%)$	$\lesssim 30.0\%~(88\%)$	$\lesssim 40.0\%~(85\%)$	$\gtrsim 100.0\%~(81\%)$
FL FL	5 = 15.0 % (55 %)	$ = 17.5 \overline{\%} (48 \overline{\%}) $	$\lesssim 7.5\%$ (46%)	$\lesssim 25.0\% (46\%)$	$ \lesssim 77.5\%(15\%) $
	$\lesssim 27.5\%(90\%)$	$\lesssim 30.0\%~(88\%)$	$\lesssim 30.0\%~(88\%)$	$\lesssim 40.0\%~(85\%)$	$\gtrsim 100.0\%~(81\%)$
Type	$\Delta \mathrm{BR}_{HZA}^{oldsymbol{s_1}}$	$\Delta \mathrm{BR}_{HZA}^{\boldsymbol{S_2}}$	$\Delta { m BR}_{HZA}^{{m S_3}}$	$\Delta { m BR}_{HZA}^{{m S_4}}$	$\Delta \mathrm{BR}^{\overline{\mathrm{MS}}}_{HZA}$
Ι	$\lesssim 5.0 \% (51 \%)$	$\lesssim 5.0\%~(51\%)$	$\lesssim 10.0\%~(46\%)$	$\lesssim 10.0 \% (53 \%)$	$\lesssim 80.0\%(26\%)$
	$\lesssim 15.0\%~(80\%)$	$\lesssim 15.0\%~(80\%)$	$\lesssim 30.0\%~(80\%)$	$\lesssim 22.5 \% \; (83 \%)$	$\gtrsim 100.0\%(52\%)$
II	$\lesssim 5.0 \ \% \ (68 \ \%)$	$\frac{1}{500} \lesssim 5.0\% (69\%)$	$\lesssim 10.0\% (50\%)$	$\lesssim 7.5 \% (73 \%)^{-1}$	$\sim 10^{-1} \lesssim \overline{85.0} \overline{\%} (\overline{20} \overline{\%})^{-1}$
	$\lesssim 10.0\%~(91\%)$	$\lesssim 12.5\%~(94\%)$	$\lesssim 25.0\%~(81\%)$	$\lesssim 10.0 \% \ (90 \%)$	$\gtrsim 100.0\%~(56\%)$
	$\lesssim 5.0 \% \;(65 \%)$	$\lesssim 5.0 \% \; (65 \%)$	$\lesssim 10.0\%~(48\%)$	$\lesssim 7.5 \% \; (41 \%)$	$\sim 10^{-1} \lesssim \overline{85.0} \overline{\%} (29 \overline{\%})^{-1}$
	$\lesssim 10.0\%~(86\%)$	$\lesssim 10.0\%~(86\%)$	$\lesssim 27.5\%(80\%)$	$\lesssim 15.0\%~(90\%)$	$\gtrsim 100.0\%~(44\%)$
FL FL	$ [\lesssim 5.0 \ \% \ (65 \ \%)] $	$1 \lesssim 5.0\% (63\%)$	$\lesssim 10.0\% (53\%)$	$ \lesssim 7.5 \% (51 \%) $	$\sim 10^{-1} \lesssim 10^{-1} \times 10$
	$\lesssim 10.0\%~(88\%)$	$\lesssim 10.0\%~(88\%)$	$\lesssim 15.0\%~(83\%)$	$\lesssim 10.0\%~(84\%)$	$\gtrsim 100.0\%~(30\%)$
Type	$\Delta \mathrm{BR}^{m{s_1}}_{HW^{\pm}H^{\mp}}$	$\Delta \mathrm{BR}^{\boldsymbol{S_2}}_{HW^{\pm}H^{\mp}}$	$\Delta \mathrm{BR}^{m{s_3}}_{HW^{\pm}H^{\mp}}$	$\Delta \mathrm{BR}_{HW^{\pm}H^{\mp}}^{\boldsymbol{S_4}}$	$\Delta \mathrm{BR}^{\overline{\mathrm{MS}}}_{HW^{\pm}H^{\mp}}$
Ι	$\lesssim 5.0 \% (56 \%)$	$\lesssim 5.0~\%~(55~\%)$	$\lesssim 10.0\%~(49\%)$	$\lesssim 10.0\% (57\%)$	$\lesssim 70.0\%(25\%)$
	1161,17 5% (2123)	< 17 5 % (81 %)	< 30.0% (78%)	<mark></mark>	e > 100.0% (52%)

[Krause,MM,'19]

SUSY-EW & SUSY-QCD Corrected Charged Higgs Decays

Scan points compatible w/ Higgs data

[HiggsSignals,HiggsBounds]

[Dao, Fritz, Krause, MM, Patel, '19] [Dao, MM, Patel, Sakurai, '21]

- Corrections to charged Higgs decays:

 Δ_{BR} : NLO impact on branching ratio, $\delta_{arGamma}$: NLO impact on partial width

- Implemented in NMSSMCALCEW [Dao, Baglio, MM, Patel, Sakurai]

SUSY-EW & SUSY-QCD Corrected Charged Higgs Decays

Scan points compatible w/ Higgs data

[HiggsSignals,HiggsBounds]

[Dao, Fritz, Krause, MM, Patel, '19] [Dao, MM, Patel, Sakurai, '21]

- Corrections to charged Higgs decays:

 Δ_{BR} : NLO impact on branching ratio, $\delta_{arGamma}$: NLO impact on partial width

- Implemented in NMSSMCALCEW [Dao, Baglio, MM, Patel, Sakurai]

SUSY-EW & SUSY-QCD Corrected Charged Higgs Decays

- Corrections to charged Higgs decays:

 Δ_{BR} : NLO impact on branching ratio, $\delta_{arGamma}$: NLO impact on partial width

- Implemented in NMSSMCALCEW [Dao, Baglio, MM, Patel, Sakurai]

Ultimate Test of the Higgs Mechanism

Experimental Results - Limits on Trilinear Higgs Self-Coupling

Double Higgs Production Processes

Double Higgs Production Processes

+Loop mediated at leading order - SM: third generation dominant

+ Threshold region sensitive to λ ; large M_{HH} : sensitive to c_{tt}/c_{bb} [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

$$gg \to HH: rac{\Delta\sigma}{\sigma} \sim -rac{\Delta\lambda}{\lambda}$$

decreasing with $M_{\rm HH}$

+Loop mediated at leading order - SM: third generation dominant

+ Threshold region sensitive to λ ; large M_{HH}: sensitive to c_{tt}/c_{bb} [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

$$gg \rightarrow HH: rac{\Delta\sigma}{\sigma} \sim -rac{\Delta\lambda}{\lambda}$$

decreasing with $M_{\rm HH}$

Higher-Order QCD Corrections to Higgs Pair Production +2-loop QCD corrections: \leq 70% [HTL, μ =M_{HH}/2] [Dawson,Dittmaier,Spira] +2-loop QCD corrections: $\sigma = \sigma_0 + \sigma_1/m_t^2 + ... + \sigma_4/m_t^8$ [refinement: full LO at differential level] [Grigo,Hoff,Melnikov,Steinhauser] + Mass effects @ NLO in real corrections: ~ - 10% [Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro] +NNLO QCD corrections: ~ 20% [HTL] [de Florian, Mazzitelli; Grigo, Melnikov, Steinhauser] +N³LO QCD corrections: ~ 5% [HTL] [Chen,Li,Shao,Wang] +NNLO Monte Carlo: inclusion of full top-mass effects @ NLO [partly at NNLO] [Grazzini,Heinrich,Jones,Kallweit,Kerner,Lindert,Mazzitelli] +NLO: matching to parton showers [Heinrich, Jones, Kerner, Luisoni, Vryonidou] +New expansion/extrapolation methods: (i) 1/m² expansion + conformal mapping + Padé approximants [Gröber,Maier,Rauh] (ii) p_T^2 expansion [Bonciani, Degassi, Giardino, Gröber] + NLO: small mass expansion $[Q^2 \gg m_t^2]$ [Davies, Mishima, Steinhauser, Wellmann] + Combination of full NLO and small mass expansion

Higher-Order QCD, EW Corrections to Higgs Pair Production

- Complete list, see e.g. twiki of LHC Higgs Working Subgroup HH and recent reviews

- -> recommendations for cross sections to be used given for
 - different c.m. energies
 - different coupling modifiers κ_{λ}
- -> uncertainties on di-Higgs cross sections

- First results on EW corrections:

 top-Yukawa induced corrections: 0.2%, not absorbable in effective trilinear coupling
 top Yukawa corrections in the high-energy limit
 [MM,Schlenk,Spira,'22]
 [Davies,Mishima,Schönwald,

Steinhauser, Zhang, '22]

Full NLO QCD Calculation

+Renormalization and factorization scale uncertainties at NLO:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+13.8\%}_{-12.8\%} \text{ fb} \sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+13.5\%}_{-12.5\%} \text{ fb} \sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 127.0(2)^{+11.7\%}_{-10.7\%} \text{ fb} \sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1140(2)^{+10.7\%}_{-10.0\%} \text{ fb}$$

+ m_t scale/scheme uncertainties at NLO:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 127.8(2)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1140(2)^{+3\%}_{-18\%} \text{ fb}$$

+Linear sum of uncertainties ~>

* Final combined renormalization/factorization scale and mt scale/scheme uncertainties at NNLO_{FTapprox}*:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 31.05^{+6\%}_{-23\%} \text{ fb} \sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 36.69^{+6\%}_{-23\%} \text{ fb} \sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 139.9^{+5\%}_{-22\%} \text{ fb} \sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1224^{+4\%}_{-21\%} \text{ fb}$$

*FT_{approx}: full NNLO QCD in the heavy-top-limit with full LO and NLO mass effects and full mass dependence in the one-loop double real corrections at NNLO QCD

+ Final combined uncertainties at NNLO_{FTapprox}:

$\kappa_\lambda = -10$:	σ_{tot}	=	$1680^{+13\%}_{-14\%}$ fb
$\kappa_\lambda = -5$:	σ_{tot}	=	598.9 $^{+13\%}_{-15\%}$ fb
$\kappa_\lambda = -1$:	σ_{tot}	=	$131.9^{+11\%}_{-16\%}$ fb
$\kappa_\lambda=$ 0 :	σ_{tot}	=	70.38 $^{+8\%}_{-18\%}$ fb
$\kappa_\lambda =$ 1 :	σ_{tot}	=	31.05 ^{+6%} fb
$\kappa_\lambda = 2$:	σ_{tot}	=	13.81 ^{+3%} fb
$\kappa_\lambda =$ 2.4 :	σ_{tot}	=	$13.10^{+6\%}_{-27\%}$ fb
$\kappa_\lambda=$ 3 :	σ_{tot}	=	$18.67^{+12\%}_{-22\%}$ fb
$\kappa_\lambda=$ 5 :	σ_{tot}	=	94.82 $^{+18\%}_{-13\%}$ fb
$\kappa_\lambda = 10$:	σ_{tot}	=	$672.2^{+16\%}_{-13\%}$ fb

Cross section: - different trilinear couplings - different Yukawa couplings
 novel particles in the loops - resonant enhancement - novel couplings

+Example NMSSM:

[taken from Dao,MM,Streicher,Walz, 13]

2 Higgs doublets	CP-violating	Singlet extension	Supersymmetry
h,H,A,H⁺,H⁻	H1,H2,H3 ,H⁺,H -	H1,H2,H3,H+,H-	H1,H2,H3,A,H⁺,H-
SFOEWPT, DM , plus charged Higgs	plus CP violation baryogenesis	rich <u>pheno</u> , DM	a lot (DM, <u>CPviol,</u> Hierarychy,)

+ Following results based on:

Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MMM, Santos, "Benchmarking Di-Higgs Production in Extended Higgs Sectors", JHEP 09 (2022) 011

+ Scans in parameter spaces of the models w/ ScannerS:

take into account all relevant theoretical and experimental constraints

+ limits from di-Higgs searches

4b: [ATLAS-CONF-Note-2021-030, ATLAS,1804.06174], WWγγ: [ATLAS,1807.08567] bbγγ: [ATLAS,1807.04873]; bbWW: [ATLAS,1811.04671, bbZZ: [CMS,2006.06391] bbττ: [ATLAS,1808.00336; ATLAS-CONF-Note-2021-035; ATLAS,2007.14811], 4W: [ATLAS,1811.11028]

+ Computation of Higgs pair production cxn:

HPAIR [Spira] for C2HDM [Gröber,MM,Spira,'17], NMSSM [Dao,MM,Streicher,Walz,'13], 2HDM [MM], N2HDM [MM]: Born-improved HTL cxn; K-factors 1.4-2.1

+ Scatter plots:

LO cxn times factor 2 (to approx. account for NLO QCD), benchmark points include NLO QCD calculated w/ HPAIR

2-Higgs Doublet Model: SM-like Higgs Pair Production

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

2-Higgs Doublet Model: SM-like Higgs Pair Production

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

Impact of Constraints - Example N2HDM Type I H_{SM} H_{SM} Production

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

Yellow - Resonant Prod: $\sigma_{NNLO}(H2)$ *BR(H2 \rightarrow H_{SM}H_{SM}) Red - Continuum Prod: 2* $\sigma_{LO}(H_{SM} H_{SM})$

Impact of Constraints - Example N2HDM Type I H_{SM} H_{SM} Production

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

Yellow - Resonant Prod: $\sigma_{NNLO}(H2)$ *BR(H2 \rightarrow H_{SM}H_{SM}) Red - Continuum Prod: 2* $\sigma_{LO}(H_{SM} H_{SM})$

Impact of Constraints - Example N2HDM Type I H_{SM} H_{SM} Production

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

Yellow - Resonant Prod: $\sigma_{NNLO}(H2)$ *BR(H2 \rightarrow H_{SM}H_{SM}) Red - Continuum Prod: 2* $\sigma_{LO}(H_{SM} H_{SM})$

- Factor 2 roughly accounts for NLO QCD corrections (benchmark points w/ HPAIR at NLO QCD in heavy-top-limit)
- Resonant searches start constraining BSM models

Single Higgs versus Di-Higgs Cascade Decays

Singlet extended N2HDM, NMSSM: non-SM Higgs is singlet-like and/or more down-than up-type like => suppressed direct production rate

+ Sample parameter point N2HDM T1:

m_{H_1} [GeV]	$m_{H_2} \; [\text{GeV}]$	m_{H_3} [GeV]	$m_A [{ m GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	aneta
125.09	281.54	441.25	386.98	421.81	1.990
$lpha_1$	$lpha_2$	$lpha_3$	$v_s \; [\text{GeV}]$	${ m Re}(m_{12}^2) \ [{ m GeV^2}]$	
1.153	0.159	0.989	9639	29769	

Final state:

6b:
$$\sigma_{H_1H_2}^{\text{NLO}} \times \text{BR}(H_2 \to H_1H_1) \times \text{BR}(H_1 \to b\bar{b})^3 = 509 \cdot 0.37 \cdot 0.60^3 \text{ fb} = 40 \text{ fb}$$

4b: $\sigma^{\text{NNLO}}(H_2) \times \text{BR}(H_2 \to H_1 H_1) \times \text{BR}(H_1 \to b\bar{b})^2 = 161 \cdot 0.37 \cdot 0.60^2 \text{ fb} = 21 \text{ fb}$

H₂ has tiny couplings to b-quarks => better chances to be discovered in di-Higgs than single Higgs channels

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

- * (i) B number violaton (sphaleron processes)
- * (ii) C and CP violation
- * (*iii*) Departure from thermal equilibrium
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\left< \Phi_c \right>}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

[Sakharov '67]

+ 2HDM type II struggles to reach SFOEWPT (compared to type I)

[see e.g. Basler,Krause,MM,Wittbrodt,Wlotzka,'16]

+ For 2HDM type II points with ξ_c < 1:

What extra dynamics is required to achieve SFOEWPT?

+ Our model: CP-conserving 2HDM with softly broken discrete Z_2 symmetry

$$V_{\text{tree}}(\Phi_1, \Phi_2) = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2]$$

+ Extended by (purely scalar) dim-6 EFT contributions to the Higgs potential [Anisha eal, 19]

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm 2HDM} + \sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i \quad \Rightarrow \quad V_{\rm dim-6} = -\sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i$$

+ Higgs pair production: a tool for fingerprinting an SFOEWPT?

O_6^{111111}	$(\Phi_1^\dagger \Phi_1)^3$	O_6^{222222}	$(\Phi_2^\dagger\Phi_2)^3$
O_6^{111122}	$(\Phi_1^\dagger\Phi_1)^2(\Phi_2^\dagger\Phi_2)$	O_6^{112222}	$(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2)^2$
O_6^{122111}	$(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)(\Phi_1^\dagger \Phi_1)$	O_6^{122122}	$(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2)$
O_6^{121211}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_1^{\dagger}\Phi_1)$ + h.c.	O_6^{121222}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_2^{\dagger}\Phi_2)$ + h.c.

- absorb dim-6 contributions (to scalar masses) in shifts $\lambda_i \rightarrow \lambda_i + \delta \lambda_i$, $m_{12}^2 \rightarrow m_{12}^2 + \delta m_{12}^2$
- ⇒ scalar mass spectrum same as for dim-4 @ LO
 ⇒ shift EFT effects into Higgs self-couplings & multi-Higgs final states
- Computation of ξ_c with BSMPT [Basler,Biermann,Mühlleitner,Müller]:

Loop-corrected effective potential at finite temperature including daisy resummation of bosonic masses; "OS" renormalization

Effect of Dim-6 Operators

[Anisha,Biermann,Englert,MM,'22]

impact of individual Wilson coefficients on ξ_c^{d6} for $\xi_c^{d4} \cong 0.9$:

- linear response ~ C_{6}^{i} -> perturbativity ok
- SFOEWPT achievable in agreement with experimental constraints

interference effects in heavy Higgs production in tt final state are width dependent -> sensitive to EFT modifications: overall effect is small after taking the Higgs data constraints into account => hh production important tool for fingerprinting SFOEWPT

- Points with $\xi_c^{d6} \approx 1$ for $\xi_c^{d4} \geq 0.3$ (red Higgs-philic points: $\xi_c^{d4} > 0.15$)
- Higgs-philic points: resonance contribution modified by ~5-10%, continuum production modified by ~50%

Conclusions

- MHI26GEV 0I Valide du 04/07/2012 au 31/12/xxxx Praiges S, Nom Boson
- + Flaws of SM call for new physics; no direct signs of new physics => Higgs boson
- + Combine results of all available observables, precision important
- + Both QCD&EW corrections are important; corrections can be more important in BSM models

Precision in HH

slowly catching up w/ H production NLO QCD mass effects important: -15% (inclusive), -30-40% (distribution at large M_{HH}) uncertainties from top mass scale and scheme choice are significant

+ HH in extended Higgs sectors

large cross sections due to resonant enhancement possible resonant searches start testing BSM models in HH interesting effects in singlet models: di-Higgs can beat single Higgs

Electroweak baryogenesis requires strong first order EWPT extension of 2HDM by scalar dim-6 operators can lead to SFOEWPT can be probed through combination of resonant-non-resonant di-Higgs production

> Higgs boson can give many insights in BSM physics Interesting times ahead!

