The strong coupling: status & prospects

Windows on the Universe

- 30th Reacontres de Vietnam

Qui Nhon, 7th August 2023 David d'Enterria

The strong coupling constant: State of the art and the decade ahead (Snowmass-2021 White Paper)

arXiv:2203.08271 [hep-ph]

Introduction: QCD coupling α_s

Determines strength of the strong interaction between quarks & gluons.
 <u>Single</u> free parameter of QCD in the m_q = 0 limit.
 Runs as inverse logarithm of energy scale Q² according to the RGE:

$$\frac{\partial \alpha_s}{\partial \log Q^2} = \beta(\alpha_s) = -\alpha_s^2(\beta_0 + \beta_1 \alpha_s + \beta_2 \alpha_s^2 + \mathcal{O}(\alpha_s^3))$$

The solution at three-loop precision r

$$\frac{\alpha_s}{4\pi}(Q^2) = \frac{1}{\beta_0 x} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\log x}{x} + \frac{\beta_1^2}{\beta_0^4 x^2} \left(\log^2 x - \log x - 1 + \frac{\beta_2 \beta_0}{\beta_1^2} \right) \right]; \quad x = \log\left(\frac{Q^2}{\Lambda^2}\right) \Lambda \approx 0.2 \text{ GeV}$$

Standard Model with n_f quark flavours:

30th Rencontres de Vietnam, Aug²23

Introduction: QCD coupling α_s

Determines strength of the strong interaction between quarks & gluons. Single free parameter of QCD in the $m_q = 0$ limit. Determined at a ref. scale (Q=m₂), decreases as $\alpha_s \approx \ln(Q^2/\Lambda^2)^{-1}$, $\Lambda \approx 0.2$ GeV

1986: First PDG world-average with ~100% uncertainty.
2023: Where are we today, 37 yrs later? Where will we be in 10 years?

30th Rencontres de Vietnam, Aug'23

Motivation: QCD coupling α_{s}

Determines strength of the strong interaction between quarks & gluons. Single free parameter of QCD in the $m_q = 0$ limit. Determined at a ref. scale (Q=m₇), decreases as $\alpha_s \approx \ln(Q^2/\Lambda^2)^{-1}$, $\Lambda \approx 0.2$ GeV

• Least precisely known of all interaction couplings ! $\delta \alpha \sim 10^{-10} \ll \delta G_{_{\rm F}} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{_{\rm S}} \sim 10^{-3}$

Motivation: α_s impact beyond QCD

Precision calculations of Higgs hadronic x-sections/decays, top mass, EWPO...

Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32
ttH	0.611	± 3.0	\pm 8.9	-9.3 + 5.9

Partial width	intr. QCD	para. m_q	para. α_s
$H \rightarrow b\bar{b}$	$\sim 0.2\%$	1.4%	0.4%
$H \to c\bar{c}$	$\sim 0.2\%$	4.0%	0.4%
$H \rightarrow gg$	$\sim 3\%$	< 0.2%	3.7%

Impacts physics approaching Planck scale: EW vacuum stability, GUT

World α_s determination (PDG 2023)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

World-average α_s (PDG 2023)

Average of pre-averages from 7 categories of observables: $\alpha_{c}(M_{2}) = 0.1179 \pm 0.0009 (\pm 0.8\%)$ BDP 2008-16 τ decays Boito 2015 Hadronic tau decay (4 values): Boito 2018 low O^2 PDG 2020 $\alpha_{s}(M_{z}) = 0.1178 \pm 0.0019 (\pm 1.6\%)$ Mateu 2018 00 Peset 2018 bound Quarkonia properties (4 values): Narison 2018 (cc) states Narison 2018 (bb) $\alpha_{s}(M_{z}) = 0.1181 \pm 0.037 (\pm 3.3\%)$ BBG06 IR14 DIS & PDFs fits (6 values): ABMP16 PDF fits NNPDF31 $\alpha_{c}(M_{z}) = 0.1162 \pm 0.0020 \ (\pm 1.7\%)$ CT18 MSHT20 ALEPH (j&s) OPAL (j&s) $e^+e^- \rightarrow hadrons final states$ (10 values): JADE (j&s) Dissertori (3j) e^+e $\alpha_{s}(M_{z}) = 0.1171 \pm 0.0031 \ (\pm 2.6\%)$ ADE (3i) jets Verbytskyi (2j) & shapes Kardos (EEC) Abbate (T) Hadron collider measurements (5 values): Gehrmann (T) Hoang (C) $\alpha_{s}(M_{z}) = 0.1165 \pm 0.0028 (\pm 2.4\%)$ Kliinsma (*t*ł) CMS (tł) hadron H1 (jets)* Electroweak precision fits (2 values): colliders d'Enterria (W/Z) HERA (jets) $\alpha_{s}(M_{z}) = 0.1208 \pm 0.0028 (\pm 2.3\%)$ PDG 2020 electroweak Gfitter 2018 Lattice QCD (1 FLAG value): LAG2019 lattice $\alpha_{s}(M_{z}) = 0.1182 \pm 0.0008 \ (\pm 0.7\%)$ 0.110 0.115 0.120 0.125 0.130 $\alpha_{\rm s}({\rm M}_{\rm 7}^2)$ August 2021

30th Rencontres de Vietnam, Aug'23

(1) α_s from lattice QCD

Comparison of short-distance quantities (QCD static energy/force, light-q & heavy-Q currents, quarkonium,..) computed at N^{2,3}LO in pQCD to lattice data with m_{had}, f_{had} fixed to exp. data: [FLAG Collab. http://flag.unibe.ch]

$$K^{\rm NP} = K^{\rm PT} = \sum_{i=0}^{n} c_i \alpha_s^i$$

- Community-agreed (FLAG) criteria based on: renorm. scale, pQCD behaviour, continuum limit, peerreviewed results.
- Current uncertainties driven mostly by pQCD truncation & matching, and continuum limit (lattice spacing & computing stats).

- Future prospects:
 - Uncertainty in α_s halved with reduced latt. spacing, N^{3,4}LO pQCD, active charm quark, extension of step-scaling method to more observables.

30th Rencontres de Vietnam, Aug'23

(2) α_s from hadronic τ -lepton decays

Experimentally: R_{τ,exp} = 3.6355 ± 0.0081 (±0.22%)

- Uncertainty driven today by:
 - Differences in pQCD approaches.
 FOPT vs. CIPT OPE expansions:
 - Treatment of non-pQCD corrections (duality violations): Note: $(\Lambda/m_{\tau})^2 \sim 2\%$
- Future prospects:
 - N⁴LO calculations.
 - Reconciling FOPT vs CIPT results (IR renormalon-free gluon condensate)

9/21

- Better spectral functions needed: BELLE-II, STCF. Longer future: $\mathcal{O}(10^{11}) \text{ Z} \rightarrow \tau\tau$ at FCC-ee(90) !

30th Rencontres de Vietnam, Aug'23

(3) α_s from DIS struct. functions & PDF fits

■ N³LO/NNLO analysis of (non)singlet struct. functions (BBG, JR14) (and NNLO global PDF AMBP fit) tend to give "lowish" $\alpha_{s}(M_{z}) \approx 0.1150$

Neglect of singlet contribs. for x>0.3 in NS fits? Size of higher-order corrs.?
 Future: New high-precision F_i(x,Q²) & polarized g_i(x,Q²) at EIC.

(3) α_s from DIS struct. functions & PDF fits

NNLO global PDF+α_s fits: CT18, HERAPDF2.0+j, MSTH2020, NNPDF3.1

DIS/FT (LHC) data tend to prefer lower (higher) values of α_s(M_z).
 Size of missing HO corrections? Global fits at N³LO needed.
 Future: EIC, LHeC/FCC-eh (±0.2%?)

30th Rencontres de Vietnam, Aug'23

(4) α_s from e⁺e⁻ event shapes & jet rates

■ Computed at N^{2,3}LO+N²LL accuracy.

 Experimentally (LEP): Thrust, C-parameter, jet shapes 3-jet x-sections

Results sensitive to non-pQCD (hadronization) corrections.

Accounted for via MCs or analytically:

 $\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$

 $C = rac{3}{2} rac{\sum_{i,j} |ec{p_i}| |ec{p_j}| \sin^2 heta_{ij}}{(\sum_i |ec{p_i}|)^2}$

OPAL 3 jet event

(4) α_s from e⁺e⁻ event shapes & jet rates

■ Computed at N^{2,3}LO+N²LL accuracy.

 Experimentally (LEP): Thrust, C-parameter, jet shapes 3-jet x-sections

- Results sensitive to non-pQCD (hadronization) corrections.
- Improved evt-shape power-corrs:

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$$
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{\left(\sum_i |\vec{p}_i|\right)^2}$$

plain '⊢

 $t_{cut} = 0.05$

 Modern jet substructure techniques:
 "Soft drop" can help reduce nonpQCD corrections for thrust:

- Future:
- Power-corrections for shapes, (N^{2,3}LL) resummation for rates. Grooming.

Res

NP (MC)

– New e^+e^- data at lower- \sqrt{s} (Belle-II) & higher- \sqrt{s} (Higgs factories) needed.

(5) α_{s} from hadron colliders: ttbar x-sections

- Top-pair inclusive x-sections available at NNLO
- Method: Compare $\sigma(exp)$ to $\sigma(NNLO)$ for diff. PDFs/ α_s : Extract α_s via χ^2 minim.

March Clark

- Advantages: Direct LO sensitivity to α_{s} (via gg \rightarrow ttbar)
- Disadvantages: $\mathcal{O}(5\%)$ exp/th. uncertainties, dependence on m_{top}

^{30&}lt;sup>th</sup> Rencontres de Vietnam, Aug'23

(5) α_s from hadron colliders: W, Z x-sections

Inclusive W,Z boson x-sections available at N^{2,3}LO

- Method: Compare $\sigma(exp)$ to $\sigma(NNLO)$ for diff. PDFs/ α_s : Extract α_s via χ^2 minim.
 - Advantages: O(1-2%) exp/th. uncertainties
 - Disadvantages: No LO sensitivity to α_s (only via K_{NnLO}~1.3)

30th Rencontres de Vietnam, Aug'23

(5) α_s from hadron colliders: Z boson d σ /dp_T

- Differential Z boson x-sections available at N^{2,3}LO+N^{3,4}LL NEW (not in PDG) ■ Method: Compare $d\sigma/dp_{\tau}(exp)$ to $d\sigma/dp_{\tau}(N^{n}LO+N^{n}LL)$ for diff. PDFs/ α_{ϵ} : Extract α_{ϵ}
 - Advantages: O(<1%) exp. uncertainties, direct sensitity to α_s (ISR gluon)
 - Disadvantages: Sensitivity to npQCD effects, resummation, HF PDFs

Extraction with "aggressive" ~0.8% uncertainty:

- Just one N³LO PDF fit so far with limited data
- Gaussian npQCD model under good control?

 $\alpha_s = 0.11828 + 0.00084 - 0.00088$

(5) α_s from hadron colliders: EEC in multijets

α_s (Q)

NEW (not in PDG)

- Multijet transv. energy-energy corrs. available at NNLO
 Precise LHC measurements of dijet topologies up to H_T≈4 TeV
- Use multi-jets transverse energy—energy correlations (TEEC) and their associated azimuthal asymmetries (ATEEC) to perform the measurement
- The TEEC function is defined as the transverse-energyweighted distribution of the azimuthal differences between jet pairs in the final state

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij}^{N} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\varphi_{ij})$$

Also use associated azimuthal asymmetries (ATEEC) to cancel uncertainties symmetric in $\cos(\phi)$

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\pi-\phi}$$

- Large theoretical improvement from NNLO correction to gg→3-jet production in pp collisions
 - reduction of theoretical uncertainty by a factor of 3

■ RGE running of the strong coupling tested up to scales Q≈4 TeV

(6) α_{s} from Z boson hadronic decays

 \Rightarrow Z-boson decays known at N³LO, no NP uncerts. (but only ~4% sensitivity to α_{s}):

W/Z

 $\Lambda \Lambda \Lambda /$

20005

$$R_l^o \equiv \frac{\Gamma(Z \to h)}{\Gamma(Z \to l)} = R_Z^{\text{EW}} N_C \left(1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_m + \delta_{np}\right)$$

Extraction from three Z-peak pseudo-observables (LEP, SLC):

 $\Gamma_7 = 2.4952 \pm 0.0023 \text{ GeV} (\pm 0.1\%) \Rightarrow \alpha_s (M_7) = 0.1221 \pm 0.0027 (\pm 2.3\%)$

Also from the global EW fit leaving α_s as single free parameter:

(6) α_s from EW bosons hadronic decays

Updated Z,W-based $\alpha_s(m_z)$ extractions:

New fit with HO EW corrs. + corrected Z LEP data. New N³LO fit to Γ_{w} , R_w

Future: Permille uncertainty possible only with a machine like FCC-e⁺e⁻

Summary: Current & future α_s precision

	Relative $\alpha_S(m_Z^2)$ uncertainty				
Method	Current	Near (long-term) future			
	theory & exp. uncertainties sources	theory & experimental progress			
(1) Lattice	0.7%	$\approx 0.3\% (0.1\%)$			
(I) Lattice	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observables			
	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO, active charm (QED effects)			
		Higher renorm. scale via step-scaling to more observ.			
(2) = docove	1.6%	< 1.%			
(2) 7 decays	N ³ LO CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT–FOPT diffs.			
	Limited τ spectral data	Improved τ spectral functions at Belle II			
(2) \overline{OO} hourd states	3.3%	pprox 1.5%			
(5) && bound states	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound states			
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits			
(4) DIS & PDF fits	1.7%	pprox 1% (0.2%)			
(4) DIS & I DI' IIIS	$N^{2,(3)}LO$ PDF (SF) fits	$N^{3}LO$ fits. Add new SF fits: $F_{2}^{p,d}$, g_{i} (EIC)			
	Span of PDF-based results	Better corr. matrices. More PDF data (LHeC/FCC-eh) $$			
$(5) a^{+}a^{-}$ jets fr out shapes	2.6%	$\approx 1.5\% \; (< 1\%)$			
(J) e e jets & evt snapes	$NNLO+N^{(1,2,3)}LL$ truncation	Add $N^{2,3}LO+N^3LL$, power corrections			
	Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, grooming			
	Limited datasets $\mathbf{w}/$ old detectors	New improved data at B factories (FCC-ee)			
(6) Electroweak fta	2.3%	(≈ 0.1%)			
(0) Electroweak fits	$N^{3}LO$ truncation	N ⁴ LO, reduced param. uncerts. $(m_{W,Z}, \alpha, CKM)$			
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FCC-ee)			
(7) Hadron colliders	2.4%	$\approx 1.5\%$			
(1) Hauron conders	NNLO(+NNLL) truncation, PDF uncerts.	N ³ LO+NNLL (for color-singlets), improved PDFs			
	Limited data sets ($t\bar{t}$, W, Z, e-p jets)	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j ratios,			
World average	0.8%	pprox 0.4% (0.1%)			

Well-defined exp./th. path towards $\alpha_s(m_z)$ permil precision in coming years

Summary: Present & future of the strong coupling

Remarkable theoretical (NⁿLO+NⁿLL, lattQCD, non-pQCD) developments:

21/21

30th Rencontres de Vietnam, Aug'23

David d'Enterria (CERN)

Backup slides

Summary: α_s wish-list for the next ~10 years

Theoretical needs to approach $\mathcal{O}(0.1\%)$ precision:

(1) Lattice QCD: Sufficient dedicated computing resources & person-power to

- Develop pQCD N^{3,4}LO theory for observables in a finite space-time volume
- Extend higher renormalization scales via step-scaling to more observables

(2) Other phenomenology efforts:

- Completion of hadronic τ decay renormalon analysis
- Advanced power corrections for e⁺e⁻ event shapes & resummation for jet rates
- NNLL accuracy parton showers matched to NNLO
- NNLO(+NNLL) MCs for complex final states in e⁺e⁻, e-p, p-p
- Differential NNLO predictions for LHC & HERA multi-jet observables,...

Experimental needs to approach $\mathcal{O}(0.1\%)$ precision:

(3) Extension of N^{2,3}LO hadron-collider- and/or PDF-based extractions via:

- LHC: Adding new precision observables & datasets (TEECC, Z pT, σ_i/σ_i ratios,...)
- LHC: Improved treatment of exp. correl. matrices uncertainties among measurements
- EIC: New DIS measurements (also LHeC/FCC-eh after it).
- FCC: Hadronic Z (and W) decays is the only non-lattice method known that can reach permille precision: Tera-Z machine needed.