Precision Electroweak Physics in the SM and Beyond

Luca Silvestrini INFN, Rome

- Introduction
- m_t, M_W and the fit to EWPO in the SM
- m_t, M_W and the fit to EWPO beyond the SM:
 - · Oblique NP
 - SMEFT
- Summary and outlook

INTRODUCTION

- $SU(2)_L \times U(1)_y$ gauge symmetry hidden at low energies, but restored in the UV
 - tree-level relations among weak couplings and masses corrected by finite and calculable loop corrections
 - precision measurements of masses and couplings
 - test the quantum structure of the SM
 - probe NP through its virtual effects

SYMMETRIES OF THE SM HIGGS SECTOR

In the SM, one Higgs doublet φ w. potential

$$V(\varphi) = -\frac{\mu^2}{2} |\varphi|^2 + \frac{\lambda}{4} |\varphi|^4 = -\frac{\mu^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\lambda}{4} \operatorname{Tr}(\Phi^{\dagger} \Phi)^2$$

with
$$\Phi\equiv {1\over \sqrt{2}} \begin{pmatrix} \varphi_0^* & \varphi_+ \\ -\varphi_+^* & \varphi_0 \end{pmatrix}$$
 , invariant under $\Phi\to U_L\Phi U_R^\dagger$

where $SU(2)_L$ coincides with gauge SU(2), while Y with the third component of $SU(2)_R$. The charge-conserving

$$\langle \Phi \rangle \equiv \frac{1}{2} \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}$$
 leaves the diagonal SU(2)_V unbroken,

ensuring
$$M_{W_1}=M_{W_2}=M_{W_3}$$
 and $ho\equiv \frac{M_W^2}{M_Z^2\cos^2\theta_W}=1$

SYMMETRIES OF THE SM HIGGS SECTOR

• Promoting right-handed quarks to $SU(2)_R$ doublets, one can write Yukawa couplings in the form

$$\bar{Q}_L \Phi \begin{pmatrix} Y_u & 0 \\ 0 & Y_d \end{pmatrix} Q_R$$

which would be $SU(2)_R$ -invariant for $Y_u = Y_d$. Therefore, the tree-level prediction $\rho = 1$ gets loop corrections proportional to $G_Fm_t^2$.

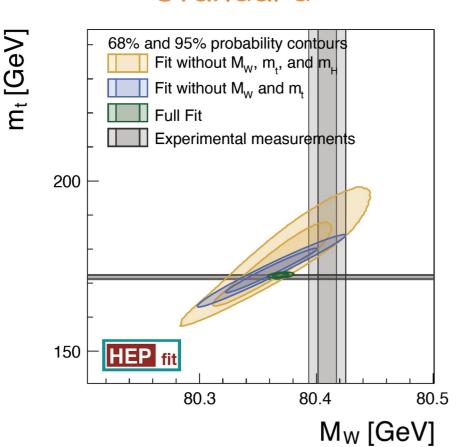
EXPERIMENTAL INPUTS

- SM input parameters:
 - G_{F} , α , M_{Z} , M_{H} , m_{t} , $\alpha_{s}(M_{Z})$, $\Delta\alpha_{had}^{(5)}$
- For $\Delta\alpha_{had}^{(5)}$ we use lattice QCD in the Euclidean + perturbative running
- For m_{t} , "standard" average completely dominated by recent CMS I+jets measurement: m_{t} =171.77±0.37 GeV. However, there is a 3.5 σ tension with the TeVatron average m_{t} =174.34±0.64 GeV, so consider also "conservative" average with error inflated to 1 GeV. Notice: PDG recipe would give a "ultra-conservative" 1.7 GeV error.

Mw: New Exp. Average

- Also for M_W , "standard" average completely dominated by recent CDF measurement.
- Updating the ATLAS measurement, and taking QED and PDF uncertainties fully correlated between TeVatron and LHC experiments, we obtain M_W =80409.3±7.9 MeV (previous average was M_W =80413.3±8.0 MeV.) Assuming no correlation moves the central value by half σ to M_W =80406.4±7.3 MeV; I will not present results for this choice.
- Also in this case there are tensions between LHC, TeVatron and LEP measurements, so consider also "conservative" average with error inflated à la PDG to 18 MeV

Mw: SM vs EXPERIMENT


Model	Pred. M_W [GeV]	Pull	Pred. M_W [GeV] Pull	
	$standard\ average$	ge	conservati	ve average	
\overline{SM}	80.3499 ± 0.0056	6.1σ	$80.3505 \pm 0.$	$0077 - 3.0 \alpha$	$\overline{\sigma}$

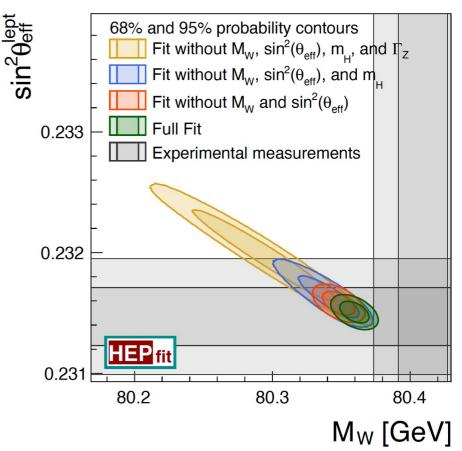
• The SM prediction is obtained omitting the experimental information on M_W . Before the CDF update, the tension was 1.8 σ . Current theory error on M_W in the SM is 4 MeV.


Awramik et al, '03

INTERPLAY OF Mw WITH OTHER OBSERVABLES

standard

conservative



INTERPLAY OF Mw WITH OTHER OBSERVABLES

standard

$sin^2\theta_{eff}^{lept}$ 68% and 95% probability contours Fit without M_W , $\sin^2(\theta_{eff})$, m_H , and Γ_Z Fit without M_W and $\sin^2(\theta_{eff})$ Full Fit 0.233 Experimental measurements 0.232 0.231 80.2 80.25 80.3 80.35 80.4 Mw [GeV]

conservative

Terminology

- Full Fit/Posterior: use all available information on both SM parameters and EWPOs. Gives our current best knowledge, assuming the validity of the SM
- Prediction/Indirect: remove experimental information on one EWPO (prediction) or on one SM parameter (indirect determination). Allows to compute pulls and local compatibility, using the output predictive pdf for the observable/parameter removed from the fit.

Terminology

- Full Prediction: use only exp info on SM parameters. Using the output pdf (including correlations) for EWPOs and the exp results allows to compute global p-value.
- Full Indirect: use only exp info on EWPO.

 Useful to identify tensions in data that cannot be relaxed in the SM irrespective of the values of SM parameters.

	Measurement	Posterior	Indirect/Prediction	Pull	Full Indirect	Pull	Full Prediction	Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11763 ± 0.00095	0.1170 ± 0.0028	0.2	0.1217 ± 0.0047	-0.8	0.1177 ± 0.0010	0.0
		[0.11577, 0.11946]	[0.1116, 0.1225]		[0.1126, 0.1310]		[0.1157, 0.1197]	
$\delta lpha_{ m had}^5$	0.02766 ± 0.00010	0.027541 ± 0.000096	0.02624 ± 0.00033	4.1	0.02793 ± 0.00068	-0.4	0.02766 ± 0.00010	0.0
		[0.027352, 0.027730]	[0.02559, 0.02689]		[0.02661, 0.02926]		[0.02746, 0.02786]	
M_Z [GeV]	91.1875 ± 0.0021	91.1910 ± 0.0020	91.2287 ± 0.0068	-5.8	91.210 ± 0.039	-0.6	91.1875 ± 0.0021	0.0
		[91.1870, 91.1949]	[91.2154, 91.2421]		[91.134, 91.287]		[91.1834, 91.1916]	
$m_t \; [\mathrm{GeV}]$	171.79 ± 0.38	172.34 ± 0.37	180.9 ± 1.5	-5.9		-1.6	171.80 ± 0.38	0.0
		[171.61, 173.06]	[178.0, 183.8]		[168.0, 205.1]		[171.05, 172.54]	
$m_H [{ m GeV}]$	125.21 ± 0.12	125.21 ± 0.12	94.0 ± 5.0	4.1		-0.8	125.21 ± 0.12	0.0
		[124.97, 125.44]	[83.3, 104.3]		[100.8, 626.8]		[124.97, 125.45]	
M_W [GeV]	80.4093 ± 0.0079	80.3696 ± 0.0045	80.3499 ± 0.0056	6.1	80.4089 ± 0.0078	0.0	80.3496 ± 0.0057	6.1
		[80.3608, 80.3786]	[80.3390, 80.3609]		[80.3934, 80.4241]		[80.3386, 80.3608]	
Γ_W [GeV]	2.085 ± 0.042	2.08896 ± 0.00052	2.08896 ± 0.00052	-0.1	2.0940 ± 0.0023	-0.2	2.08744 ± 0.00059	0.0
		[2.08793, 2.08999]	[2.08793, 2.08998]		[2.0896, 2.0984]		[2.08627, 2.08859]	
$\sin^2 \theta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.2324 ± 0.0012	0.231474 ± 0.000055	0.231473 ± 0.000055	0.8	0.23146 ± 0.00014	0.8	0.231558 ± 0.000062	0.7
		[0.231366, 0.231583]	[0.231364, 0.231581]		[0.23119, 0.23173]		[0.231436, 0.231679]	
$P_{\tau}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14739 ± 0.00044	0.14741 ± 0.00044	-0.3	0.1475 ± 0.0011	-0.3	0.14675 ± 0.00049	-0.1
		[0.14654, 0.14825]	[0.14655, 0.14827]		[0.1454, 0.1496]		[0.14580, 0.14770]	
Γ_Z [GeV]	2.4955 ± 0.0023	2.49454 ± 0.00064	2.49434 ± 0.00068	0.5	2.4953 ± 0.0020	0.1	2.49397 ± 0.00068	0.6
		[2.49328, 2.49580]	[2.49300, 2.49567]		[2.4912, 2.4993]		[2.49262, 2.49531]	
σ_h^0 [nb]	41.480 ± 0.033	41.4892 ± 0.0077	41.4914 ± 0.0080	-0.3	41.462 ± 0.030	0.4	41.4923 ± 0.0080	-0.4
		[41.4742, 41.5042]	[41.4758, 41.5072]		[41.403, 41.522]		[41.4766, 41.5081]	
R_ℓ^0	20.767 ± 0.025	20.7487 ± 0.0080	20.7451 ± 0.0086	0.8	20.760 ± 0.022	0.2	20.7468 ± 0.0087	0.7
		[20.7329, 20.7645]	[20.7281, 20.7621]		[20.717, 20.802]		[20.7298, 20.7637]	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.016293 ± 0.000096	0.016284 ± 0.000096	0.8	0.01631 ± 0.00024	0.8	0.01615 ± 0.00011	1.0
FB		[0.016106, 0.016482]	[0.016097, 0.016476]		[0.01585, 0.01679]		[0.01594, 0.01636]	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14739 ± 0.00044	0.14742 ± 0.00045	1.8	0.1475 ± 0.0011	1.6	0.14675 ± 0.00049	2.1
,		[0.14654, 0.14825]	[0.14654, 0.14832]		[0.1454, 0.1496]		[0.14580, 0.14770]	
R_b^0	0.21629 ± 0.00066	0.215894 ± 0.000100	0.21589 ± 0.00010	0.6	0.21543 ± 0.00036	1.1	0.21591 ± 0.00010	0.6
		[0.215697, 0.216090]	[0.21569, 0.21609]		[0.21472, 0.21614]		[0.21571, 0.21611]	
R_c^0	0.1721 ± 0.0030	0.172198 ± 0.000054	0.172199 ± 0.000054	-0.1	0.17240 ± 0.00018	-0.1	0.172189 ± 0.000054	-0.1
		[0.172093, 0.172302]	[0.172094, 0.172304]		[0.17205, 0.17277]		[0.172084, 0.172295]	
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10334 ± 0.00031	0.10335 ± 0.00032	-2.3	0.10338 ± 0.00077	-2.1	0.10288 ± 0.00034	-2.0
ГВ		[0.10273, 0.10393]	[0.10273, 0.10398]		[0.10189, 0.10489]		[0.10220, 0.10354]	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07384 ± 0.00023	0.07385 ± 0.00024	-0.9	0.07391 ± 0.00059	-0.9		-0.8
гв		[0.07339, 0.07428]	[0.07339, 0.07432]		[0.07275, 0.07507]		[0.07298, 0.07398]	
\mathcal{A}_b	0.923 ± 0.020	0.934768 ± 0.000040	0.934769 ± 0.000040	-0.6	0.93460 ± 0.00016	-0.6	0.934721 ± 0.000041	-0.6
		[0.934690, 0.934845]	[0.934691, 0.934846]		[0.93428, 0.93492]		[0.934642, 0.934801]	
\mathcal{A}_c	0.670 ± 0.027	0.66795 ± 0.00021	0.66795 ± 0.00022	0.1	0.66817 ± 0.00054	0.1		0.1
		[0.66753, 0.66837]	[0.66753, 0.66838]		[0.66711, 0.66921]		[0.66722, 0.66810]	
$\overline{\mathcal{A}_s}$	0.895 ± 0.091		0.935674 ± 0.000040	-0.4		-0.5	0.935621 ± 0.000041	-0.5
20.00		[0.935597, 0.935752]	[0.935597, 0.935752]		[0.935523, 0.935907]		[0.935541, 0.935702]	
$\mathrm{BR}_{W\ell\bar{ u}_{\ell}}$	0.10860 ± 0.00090			0.2			0.108386 ± 0.000023	0.2
		[0.108345, 0.108431]	[0.108344, 0.108431]		[0.10807, 0.10850]		[0.108340, 0.108432]	
$\sin^2 \theta_{\text{eff}}^{ll}$ (HC)	0.23143 ± 0.00025		0.231477 ± 0.000056	-0.2	0.23146 ± 0.00014	-0.1	0.231558 ± 0.000062	-0.5
en (***)		[0.231366, 0.231583]	[0.231366, 0.231588]		[0.23119, 0.23173]		[0.231436, 0.231679]	,
R_{uc}	0.1660 ± 0.0090		0.172220 ± 0.000031	-0.7	0.17242 ± 0.00018	-0.7	0.172212 ± 0.000032	-0.7
- 000		[0.172158, 0.172282]	[0.172158, 0.172281]		[0.17208, 0.17278]		[0.172149, 0.172275]	
	1	[[[[[

	Measurement	Posterior	Indirect/Prediction	Pull	Full Indirect	Pull	Full Prediction	Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11791 ± 0.00094	0.1197 ± 0.0028	-0.7	0.1218 ± 0.0047	-0.8	0.1177 ± 0.0010	0.0
		[0.11606, 0.11976]	[0.1142, 0.1253]		[0.1126, 0.1310]	1 200 50 50 50	[0.1157, 0.1197]	
$\delta lpha_{ m had}^5$	0.02766 ± 0.00010	0.027624 ± 0.000097	0.02703 ± 0.00040	1.5	0.02792 ± 0.00071	-0.4	0.02766 ± 0.00010	-0.1
naa		[0.027432, 0.027814]	[0.02624, 0.02781]		[0.02653, 0.02932]		[0.02747, 0.02786]	
M_Z [GeV]	91.1875 ± 0.0021	91.1883 ± 0.0021	91.218 ± 0.011	-2.7	91.209 ± 0.039	-0.5	91.1875 ± 0.0021	-0.1
2 []	CASCATA SEC. OR CAMPAGACCATA	[91.1843, 91.1924]	[91.196, 91.240]		[91.134, 91.287]	15/10/17	[91.1834, 91.1916]	
m_t [GeV]	171.8 ± 1.0	172.75 ± 0.93	179.1 ± 2.5	-2.6	186.5 ± 10.1	-1.4	171.8 ± 1.0	0.0
		[170.92, 174.59]	[174.0, 184.0]		[166.7, 205.8]		[169.8, 173.8]	
m_H [GeV]	125.21 ± 0.12	125.21 ± 0.12	105.0 ± 11.3	1.5	238.4 ± 121.3	-0.8	125.21 ± 0.12	0.1
[]		[124.97, 125.44]	[87.7, 134.1]		[98.1, 629.5]	777.70	[124.97, 125.45]	
M_W [GeV]	80.409 ± 0.018	80.3595 ± 0.0070	80.3505 ± 0.0077	3.0	80.407 ± 0.017	0.1	80.3497 ± 0.0079	3.1
		[80.3456, 80.3733]	[80.3355, 80.3656]		[80.373, 80.441]		[80.3342, 80.3653]	
Γ_W [GeV]	2.085 ± 0.042	2.08831 ± 0.00067	2.08830 ± 0.00067	-0.1	2.0939 ± 0.0026	-0.2	2.08743 ± 0.00073	0.0
IW [GOV]	2.000 ± 0.012	[2.08700, 2.08963]	[2.08700, 2.08961]	0.1	[2.0888, 2.0989]	0.2	[2.08601, 2.08889]	0.0
$\sin^2 \theta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.2324 ± 0.0012		0.231505 ± 0.000059	0.7	0.23146 ± 0.00014	0.8	0.231558 ± 0.000068	0.7
$s_{\rm in} \ v_{\rm eff} \ (Q_{\rm FB})$	0.2324 ± 0.0012	[0.231389, 0.231623]	$[0.231303 \pm 0.000039]$	0.7	[0.23119, 0.23173]	0.6	[0.231426, 0.231691]	0.7
Dpol 4	0.1465 0.0000		, ,	0.0		0.0	, ,	0.1
$P_{ au}^{ m pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14713 ± 0.00047	0.14716 ± 0.00047	-0.2	0.1475 ± 0.0011	-0.3	0.14674 ± 0.00053	-0.1
D [O VI	0.4055 0.0000	[0.14622, 0.14806]	[0.14622, 0.14808]	0.5	[0.1454, 0.1496]	0.1	[0.14570, 0.14779]	
Γ_Z [GeV]	2.4955 ± 0.0023	2.49444 ± 0.00067	2.49423 ± 0.00071	0.5	2.4952 ± 0.0021	0.1	2.49396 ± 0.00072	0.6
0.1.1	44 400 4 0 000	[2.49313, 2.49574]	[2.49285, 2.49562]		[2.4911, 2.4993]	0.4	[2.49257, 2.49538]	0.4
$\sigma_h^0 \text{ [nb]}$	41.480 ± 0.033	41.4907 ± 0.0076	41.4928 ± 0.0080	-0.4	41.462 ± 0.030	0.4	41.4924 ± 0.0080	-0.4
-0		[41.4756, 41.5057]	[41.4771, 41.5086]		[41.403, 41.522]		[41.4767, 41.5083]	
R_ℓ^0	20.767 ± 0.025	20.7495 ± 0.0080	20.7460 ± 0.0087	0.8	20.760 ± 0.022	0.2	20.7470 ± 0.0087	0.8
0.4	700-700-700-700-700-700-700-700-700-700	[20.7337, 20.7652]	[20.7291, 20.7630]		[20.717, 20.803]		[20.7297, 20.7638]	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01624 ± 0.00010	0.01623 ± 0.00010	0.9	0.01631 ± 0.00024	0.8	0.01615 ± 0.00012	1.0
		[0.01604, 0.01644]	[0.01602, 0.01643]		[0.01585, 0.01679]		[0.01592, 0.01638]	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14713 ± 0.00047	0.14715 ± 0.00049	1.9	0.1475 ± 0.0011	1.6	0.14674 ± 0.00053	2.1
		[0.14622, 0.14806]	[0.14619, 0.14811]		[0.1454, 0.1496]		[0.14570, 0.14779]	
R_b^0	0.21629 ± 0.00066	0.21588 ± 0.00010	0.21587 ± 0.00011	0.6	0.21545 ± 0.00038	1.1	0.21591 ± 0.00011	0.6
		[0.21567, 0.21608]	[0.21566, 0.21608]		[0.21470, 0.21617]		[0.21570, 0.21611]	
R_c^0	0.1721 ± 0.0030	0.172206 ± 0.000054	0.172206 ± 0.000054	0.0	0.17239 ± 0.00019	-0.1	0.172190 ± 0.000055	-0.1
		[0.172100, 0.172313]	[0.172099, 0.172312]		[0.17204, 0.17277]		[0.172082, 0.172297]	
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10315 ± 0.00033	0.10316 ± 0.00034	-2.2	0.10338 ± 0.00076	-2.1	0.10287 ± 0.00037	-2.0
FB		[0.10250, 0.10380]	[0.10248, 0.10384]		[0.10187, 0.10488]		[0.10214, 0.10361]	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07370 ± 0.00025	0.07370 ± 0.00026	-0.9	0.07391 ± 0.00059	-0.9	0.07348 ± 0.00028	-0.8
FB		[0.07321, 0.07418]	[0.07319, 0.07421]		[0.07275, 0.07507]		[0.07293, 0.07403]	
\mathcal{A}_b	0.923 ± 0.020	0.934739 ± 0.000040		-0.6	0.93461 ± 0.00017	-0.6	0.934721 ± 0.000041	-0.6
• -0		[0.934661, 0.934819]	[0.934661, 0.934820]		[0.93427, 0.93494]		[0.934640, 0.934802]	
\mathcal{A}_c	0.670 ± 0.027	0.66783 ± 0.00023	0.66783 ± 0.00023	0.1	0.66815 ± 0.00054	0.1	0.66766 ± 0.00024	0.1
• • •		[0.66737, 0.66828]	[0.66737, 0.66829]		[0.66711, 0.66922]		[0.66718, 0.66814]	
\mathcal{A}_s	0.895 ± 0.091		0.935653 ± 0.000043	-0.4		-0.5		-0.5
- *5	0.001	[0.935568, 0.935736]	[0.935568, 0.935736]	5.1	[0.935518, 0.935906]	0.0	[0.935533, 0.935709]	3.0
$\mathrm{BR}_{W\ellar u_\ell}$	0.10860 ± 0.00090	1	0.108381 ± 0.000022	0.2	0.10829 ± 0.00011		0.108386 ± 0.000023	0.2
VV EVE	0.00000		[0.108338, 0.108424]	٥.2	[0.10808, 0.10851]	0.0	[0.108340, 0.108432]	3.2
$\sin^2 \theta_{\rm eff}^{ll}$ (HC)	0.23143 ± 0.00025		0.231511 ± 0.000061	_0.3	0.23146 ± 0.00014	_0 1	0.231558 ± 0.000068	_0.5
om v _{eff} (110)	0.20140 ± 0.00020	[0.231389, 0.231623]	$[0.231311 \pm 0.000001]$	0.5	[0.23119, 0.23173]	0.1	[0.231426, 0.231691]	0.0
R_{uc}	0.1660 ± 0.0090		0.172227 ± 0.000033	_0.7	0.17242 ± 0.00018	_0 7	0.172211 ± 0.000034	_0.7
uc	0.1000 ± 0.0090		$[0.172227 \pm 0.000033]$	-0.1	$[0.17242 \pm 0.00018]$	-0.7	$[0.172211 \pm 0.000034]$	-0.7
		[0.172103, 0.172292]	[0.172104, 0.172292]		[0.11201, 0.11216]		[0.172145, 0.172277]	

LOCAL VS GLOBAL SIGNIFICANCE

- Considering the whole set of EWPO, what is the global agreement with the SM?
- Compute global p-value of the "full prediction", taking into account experimental and theoretical correlations:
 - p=1.2 10⁻⁴, i.e. 3.9 σ (standard scenario)
 - p=0.27, i.e. 1.10 (conservative scenario)

Mw BEYOND THE SM

- Add heavy NP that decouples, leaving its virtual footprints:
 - dominantly in gauge Boson propagators: "oblique"
 NP
 - in the complete set of gauge-invariant dimension six operators (SMEFT)
- For explicit models (Z', composite Higgs, etc.) see e.g. Strumia '22

OBLIQUE NP

 Assume NP dominant contribution is in gauge Boson propagators:

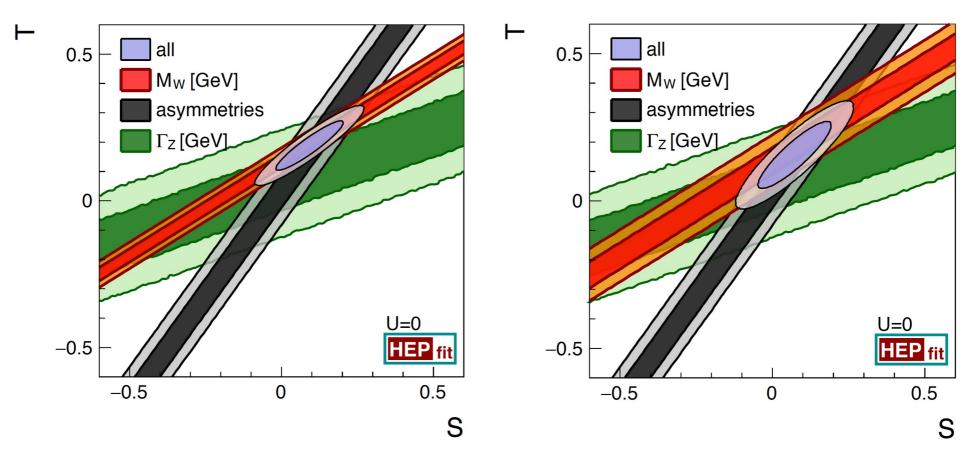
$$S = -16\pi \Pi_{30}^{\text{NP}'}(0) = 16\pi \left[\Pi_{33}^{\text{NP}'}(0) - \Pi_{3Q}^{\text{NP}'}(0) \right],$$

$$T = \frac{4\pi}{s_W^2 c_W^2 M_Z^2} \left[\Pi_{11}^{\text{NP}}(0) - \Pi_{33}^{\text{NP}}(0) \right],$$

$$U = 16\pi \left[\Pi_{11}^{\text{NP}'}(0) - \Pi_{33}^{\text{NP}'}(0) \right]$$

• EWPO are modified as follows:

$$-\delta\Gamma_{Z} \propto -10(3 - 8s_W^2) S + (63 - 126s_W^2 - 40s_W^4) T$$


-
$$\delta$$
Mw, $\delta\Gamma_{W} \propto S - 2c_{W}^{2}T - \frac{(c_{W}^{2} - s_{W}^{2})U}{2s_{W}^{2}}$

- all other observables: $S-4c_W^2s_W^2T$

OBLIQUE NP: U=0

standard

conservative

OBLIQUE NP: RESULTS

• Compare models using the Information Criterion:

$$IC \equiv -2\overline{\log \mathcal{L}} + 4\sigma_{\log \mathcal{L}}^2$$

	Result	Correlation	Result	Correlation
	$(IC_{ST}/IC_{SM} =$, ,	$(IC_{STU}/IC$	$_{\rm SM} = 25.3/73.9)$
	0.092 ± 0.073		0.004 ± 0.096	1.00
T	0.188 ± 0.056	0.93 1.00	0.04 ± 0.12	0.91 1.00
U	_		0.122 ± 0.087	$-0.65 -0.88 \ 1.00$

No significant gain in IC for U≠0

Model	Pred. M_W [GeV]	Pull	Pred. M_W [GeV]	Pull
	standard avera	age	$ conservative \ ave$	erage
\overline{SM}	80.3499 ± 0.0056	6.1σ	80.3505 ± 0.0077	3.0σ
ST	80.366 ± 0.029	1.4σ	80.367 ± 0.029	1.2σ
STU	80.32 ± 0.54	0.2σ	80.32 ± 0.54	0.2σ

THE SMEFT

- Most general gauge-invariant Lagrangian built with SM fields up to dimension d (here d=6)
- Some relevant operators in the "Warsaw basis": $o^{(1)} = (\phi^{\dagger} i \overrightarrow{D}) \phi(\overline{J}_{1} \circ \phi^{\dagger} J_{2})$

$$\mathcal{O}_{\phi WB} = (\phi^{\dagger} \sigma_{i} \phi) W_{\mu\nu}^{i} B^{\mu\nu} , \longrightarrow \mathbf{S}$$

$$\mathcal{O}_{\phi D} = (\phi^{\dagger} D^{\mu} \phi)^{*} (\phi^{\dagger} D_{\mu} \phi) , \longrightarrow \mathbf{T}$$

$$\mathcal{O}_{ll} = (\overline{l_{L}} \gamma^{\mu} l_{L}) (\overline{l_{L}} \gamma^{\mu} l_{L})$$

$$\mathcal{O}_{\phi l}^{(1)} = (\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi) (\overline{l}_{L} \gamma^{\mu} l_{L}) ,$$

$$\mathcal{O}_{\phi l}^{(3)} = (\phi^{\dagger} i \overrightarrow{D}_{\mu}^{i} \phi) (\overline{l}_{L} \sigma_{i} \gamma^{\mu} l_{L}) ,$$

$$\mathcal{O}_{\phi e} = (\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi) (\overline{e}_{R} \gamma^{\mu} e_{R}) ,$$

$$\mathcal{O}_{\phi q}^{(1)} = (\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi) (\overline{q}_{L} \gamma^{\mu} q_{L}) ,$$

$$\mathcal{O}_{\phi q}^{(3)} = (\phi^{\dagger} i \overrightarrow{D}_{\mu}^{i} \phi) (\overline{q}_{L} \sigma_{i} \gamma^{\mu} q_{L}) ,$$

$$\mathcal{O}_{\phi u} = (\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi) (\overline{u}_{R} \gamma^{\mu} u_{R}) ,$$

$$\mathcal{O}_{\phi d} = (\phi^{\dagger} i \overrightarrow{D}_{\mu} \phi) (\overline{d}_{R} \gamma^{\mu} d_{R}) ,$$

Mw IN THE SMEFT

 Eight independent combinations of dim. 6 operators contribute to EWPO. In the

Warsaw basis:
$$\hat{C}_{\varphi f}^{(1)} = C_{\varphi f}^{(1)} - \frac{Y_f}{2} C_{\varphi D}, \quad f = l, q, e, u, d,$$
 (6)

$$\hat{C}_{\varphi f}^{(3)} = C_{\varphi f}^{(3)} + \frac{c_w^2}{4s_w^2} C_{\varphi D} + \frac{c_w}{s_w} C_{\varphi WB}, \quad f = l, q, \quad (7)$$

$$\hat{C}_{ll} = \frac{1}{2}((C_{ll})_{1221} + (C_{ll})_{2112}) = (C_{ll})_{1221}, \tag{8}$$

 Again, one independent combination enters only M_W and Γ_w , namely: $\hat{C}_{\varphi l}^{(3)} - \hat{C}_{ll}/2$; very loose prediction for M_W from Γ_W

Model	Pred. M_W [GeV] Pull	Pred. M_W [GeV	Pull	
	standard ave	rage	$conservative \ average$		
SMEFT	80.66 ± 1.68	-0.1σ	80.66 ± 1.68	-0.1σ	

SMEFT: FIT RESULTS

			(IC_{S})	$_{ m MEFT}/{ m I}$	$C_{\mathrm{SM}} = 3$	31.8/73.9	9)				_
	$\hat{C}_{\varphi l}^{(1)}$	-0.007 ± 0.011	1.00								
	$ \hat{C}_{\varphi l}^{(1)} \\ \hat{C}_{\varphi l}^{(3)} \\ \hat{C}_{\varphi e} $	-0.039 ± 0.015	-0.68	1.00							
	$\hat{C}_{arphi e}$	-0.015 ± 0.009	0.48	0.04	1.00						
TeV ⁻²	$\hat{C}_{\varphi q}^{(1)}$	-0.018 ± 0.044	-0.02	-0.06	-0.13	1.00					standard
	$\hat{C}_{\varphi q}^{(3)}$	-0.111 ± 0.043	-0.03	0.04	-0.16	-0.37	1.00				averages
	$\hat{C}_{arphi u}$	0.08 ± 0.15						1.00			averages
	$\hat{C}_{arphi d}$	-0.63 ± 0.25				0.40		-0.05			
	\hat{C}_{ll}	-0.021 ± 0.028	-0.80	0.95	-0.10	-0.06	-0.01	-0.04	-0.05	1.00	_

• Cirigliano et al. noted that a combination of these operators also contributes to first-row CKM unitarity violation. This effect can be compensated by $C^{(3)}_{lq}$ which does not enter EWPO. However, $C^{(3)}_{lq}$ can be constrained by LHC e.g. in pp \rightarrow II.

EWPO BEYOND THE SM

	Measurement	ST	STU	SMEFT
M_W [GeV]	80.4093 ± 0.0079	80.4065 ± 0.0075	80.4090 ± 0.0080	80.4090 ± 0.0080
$\Gamma_W \; [{ m GeV}]$	2.085 ± 0.042	2.09190 ± 0.00070	2.09215 ± 0.00075	2.0779 ± 0.0070
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.23143 ± 0.00014	0.23147 ± 0.00014	
$P_{ au}^{ m pol}=\mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0015
$\Gamma_Z \; [{ m GeV}]$	2.4955 ± 0.0023	2.4979 ± 0.0011	2.4951 ± 0.0022	2.4955 ± 0.0023
σ_h^0 [nb]	41.480 ± 0.033	41.4910 ± 0.0080	41.4905 ± 0.0075	41.482 ± 0.033
R_ℓ^0	20.767 ± 0.025	20.7505 ± 0.0085	20.7510 ± 0.0080	20.769 ± 0.025
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01638 ± 0.00023	0.01631 ± 0.00024	0.01660 ± 0.00032
$\mathcal{A}_{\ell} \; (\mathrm{SLD})$	0.1513 ± 0.0021	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0015
R_b^0	0.21629 ± 0.00066	0.21591 ± 0.00011	0.21591 ± 0.00011	0.21632 ± 0.00066
R_c^0	0.1721 ± 0.0030	0.172195 ± 0.000055	0.172200 ± 0.000050	0.17159 ± 0.00099
$A_{\rm FB}^{0,b}$	0.0996 ± 0.0016	0.10361 ± 0.00076	0.10337 ± 0.00078	0.1009 ± 0.0014
$A_{ m FB}^{ ilde{0}, ilde{c}}$	0.0707 ± 0.0035	0.07405 ± 0.00058	0.07387 ± 0.00060	0.0734 ± 0.0023
\mathcal{A}_b	0.923 ± 0.020	0.934810 ± 0.000100	0.93478 ± 0.00010	0.903 ± 0.013
\mathcal{A}_c	0.670 ± 0.027	0.66813 ± 0.00053	0.66797 ± 0.00054	0.658 ± 0.020
\mathcal{A}_s	0.895 ± 0.091	0.935705 ± 0.000095	0.935680 ± 0.000100	0.905 ± 0.013
$\mathrm{BR}_{W\ellar u_\ell}$	0.10860 ± 0.00090	0.108385 ± 0.000025	0.108380 ± 0.000020	0.10900 ± 0.00039
$\sin^2 \theta_{ m eff}^{ll} ({ m HC})$	0.23143 ± 0.00025	0.23143 ± 0.00014	0.23147 ± 0.00014	
R_{uc}	0.1660 ± 0.0090	0.172220 ± 0.000030	0.172220 ± 0.000030	0.17162 ± 0.00099
30th Anniversary R	encontres du Vietnam		standard av	rerages

Conclusions

- Remarkable experimental progress in m_{t} and M_{W} , but tensions among measurements present in both cases: outcome of M_{W} and m_{t} averaging group badly needed!
- Taken at face value, M_W implies a local (global) discrepancy at the 6.1σ (3.9 σ) level, calling for NP
- Oblique/decoupling NP can accommodate the tension for scales close to the EW scale if loop-mediated, or at the TeV scale if tree-level/strongly interacting.
- If a more conservative averaging procedure is followed, the tension becomes much milder and the implications on NP much softer.
- More measurements of M_W (and m_t) crucial!